Friction stir keyholeless spot welding(FSKSW) using a retractable pin for 1.0 mm thick galvanized mild steel and 3 mm thick AZ31 B magnesium alloy in a lap configuration was investigated.The process variables were o...Friction stir keyholeless spot welding(FSKSW) using a retractable pin for 1.0 mm thick galvanized mild steel and 3 mm thick AZ31 B magnesium alloy in a lap configuration was investigated.The process variables were optimized in terms of the joint strength.The effects of the stacking sequence on joint formation and the joining mechanism of FSKSW AZ31B-to-mild steel joints were also analyzed.It shows that the process window and joint strength are strongly influenced by the stacking sequence of the workpieces.While the process window is narrow and unstable for FSKSW of a magnesium-to-steel stack-up,a desirable process was established for the steel-to-magnesium stacking sequence,a desirable process and higher strength joint can be got when the steel-to-magnesium stacking sequence.XRD phase and EPMA analyses of the FSKSW joint showed that the intermetallic compounds are formed at the steel-to-magnesium interface,and the element diffusion between the mild steel and AZ31 B magnesium alloy revealed that the joining methods for FSKSW joints is the main mechanical joining along with certain metallurgical bonding.展开更多
Because the bonding interface of dissimilar metal joint between AZ31 B Mg alloy and DP600 galvanized steel by keyholeless friction stir spot welding(KFSSW)is permanent bonding,the interface morphology cannot be direct...Because the bonding interface of dissimilar metal joint between AZ31 B Mg alloy and DP600 galvanized steel by keyholeless friction stir spot welding(KFSSW)is permanent bonding,the interface morphology cannot be directly observed.If the joint is separated by external force,the original features of bonding interface of joint will be destroyed,which has influence on the accuracy for observation and analysis of the result.In this paper,the coordinates of the key point at the interface of every cross-section at intervals of 0.2 mm were measured and connected into an outline.The outline of all interfaces makes up the three-dimensional morphologies of bonding interface between AZ31 B Mg alloy and DP600 steel by KFSSW,which was constructed by Solidworks software to restore the real mechanical bonding state of joint.Combined with the microhardness analysis of cross-section and results of in-situ tensile test,the unique bonding state and morphology of Mg and steel in the welded joint were confirmed.展开更多
基金Project (10902047,51265030) supported by the National Natural Science Foundation of China
文摘Friction stir keyholeless spot welding(FSKSW) using a retractable pin for 1.0 mm thick galvanized mild steel and 3 mm thick AZ31 B magnesium alloy in a lap configuration was investigated.The process variables were optimized in terms of the joint strength.The effects of the stacking sequence on joint formation and the joining mechanism of FSKSW AZ31B-to-mild steel joints were also analyzed.It shows that the process window and joint strength are strongly influenced by the stacking sequence of the workpieces.While the process window is narrow and unstable for FSKSW of a magnesium-to-steel stack-up,a desirable process was established for the steel-to-magnesium stacking sequence,a desirable process and higher strength joint can be got when the steel-to-magnesium stacking sequence.XRD phase and EPMA analyses of the FSKSW joint showed that the intermetallic compounds are formed at the steel-to-magnesium interface,and the element diffusion between the mild steel and AZ31 B magnesium alloy revealed that the joining methods for FSKSW joints is the main mechanical joining along with certain metallurgical bonding.
基金supported by Natural Science Foundation of Shandong Province(No.ZR2019PEE042)。
文摘Because the bonding interface of dissimilar metal joint between AZ31 B Mg alloy and DP600 galvanized steel by keyholeless friction stir spot welding(KFSSW)is permanent bonding,the interface morphology cannot be directly observed.If the joint is separated by external force,the original features of bonding interface of joint will be destroyed,which has influence on the accuracy for observation and analysis of the result.In this paper,the coordinates of the key point at the interface of every cross-section at intervals of 0.2 mm were measured and connected into an outline.The outline of all interfaces makes up the three-dimensional morphologies of bonding interface between AZ31 B Mg alloy and DP600 steel by KFSSW,which was constructed by Solidworks software to restore the real mechanical bonding state of joint.Combined with the microhardness analysis of cross-section and results of in-situ tensile test,the unique bonding state and morphology of Mg and steel in the welded joint were confirmed.