Large squeezing deformation of layered soft rock tunnel under high geo-stress has a significant time-dependent deformation behavior.In this paper,we studied the deformation mechanism during the construction period of ...Large squeezing deformation of layered soft rock tunnel under high geo-stress has a significant time-dependent deformation behavior.In this paper,we studied the deformation mechanism during the construction period of deep-buried softrock tunnel by means of a combination of field observations and a numerical method.First,a new classification criterion for large deformations based on the power exponent variation law between the deformation and the strength-stress ratio is proposed.Then,the initial damage tensor reflecting the bedding plane(joint)distribution and an equivalent damage evolution equation derived from the viscoplastic strain are introduced based on the geometric research method,i.e.,a new rheological damage model(RDL model)of layered soft rock is established consisting of elastic,viscous,viscoelastic,viscoplastic and plastic elements.A field test was conducted on the Maoxian tunnel in Sichuan province,southwestern China,which is in broken phyllite(layered soft rock)under high geo-stress.The tunnel has experienced large deformation due to serious squeezing pressure,thus we adopted double primary support method to overcome the supporting structure failure problems.The rheological parameters of phyllite in the Maoxian tunnel were recognized by using SA-PSO optimization,and the RDL model does a good job in describing the time-dependent deformation behavior of a layered soft-rock tunnel under high geo-stress.Thus,the RDL model was used to investigate the supporting effect and bearing mechanism of the double primary support method.Compared with the single primary support method,the surrounding rock pressure,secondary lining force,surrounding rock deformation,and the depth of the damage to the rock mass was reduced by 40%-60%after the double primary support method was used.展开更多
Composite made of short-cut carbon fiber mat and vinyl ester resin was observed to be an effective sensor for tensile strain up to 6 000με. Based on its strain sensitivity, a skin-like sensitive layer which can cont...Composite made of short-cut carbon fiber mat and vinyl ester resin was observed to be an effective sensor for tensile strain up to 6 000με. Based on its strain sensitivity, a skin-like sensitive layer which can continuously cover the structural surface to sense strain in large area was developed. The sensitive layer was applied to continuously monitor the deformation of a simply supported beam. The result indicates that the fractional change in electrical resistance of the sensitive layer reversibly reflects the beam deformation in each section and describes the distribution of the average strain of the beam. The effect of temperature change on the monitoring was studied by monitoring tests conducted at different temperatures ranging from 20 to 80 ℃, which reveals temperature sensitivity in the sensitive layer and the temperature dependence of the piezoresistive behavior when the temperature exceeds 50 ℃. By the application of differential conaection principle, a method for temperature compensation was established and the gauge factor for the monitoring was dramatically increased. This method was verified experimentally.展开更多
Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on ...Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on the long-term deformation for underground structures. A three-dimensional consolidation analysis method under the asymmetric loads is developed for porous layered soil based on Biot's classical theory. Time-displacement effects can be fully considered in this work and the analytical solutions are obtained by the state space approach in the Cartesian coordinate. The Laplace and double Fourier integral transform are applied to the state variables in order to reduce the partial differential equations into algebraic differential equations and easily obtain the state space solution. Starting from the governing equations of saturated porous soil, the basic relationship of state space variables is established between the ground surface and the arbitrary depth in the integral transform domain. Based on the continuity conditions and boundary conditions of the multi-layered pore soil model, the multi-layered pore half-space solutions are obtained by means of the transfer matrix method and the inverse integral transforms. The accuracy of proposed method is demonstrated with existing classical solutions. The results indicate that the porous homogenous soils as well as the porous non-homogenous layered soils can be considered in this proposed method. When the consolidation time factor is 0.01, the value of immediate consolidation settlement coefficient calculated by the weighted homogenous solution is 27.4% bigger than the one calculated by the non-homogeneity solution. When the consolidation time factor is 0.05, the value of excess pore water pressure for the weighted homogenous solution is 27.2% bigger than the one for the non-homogeneity solution. It is shown that the material non-homogeneity has a great influence on the long-term settlements and the dissipation process of excess pore water pressure.展开更多
Based on the occurrence features of Group B coal-seams at a coal mine in the Huainan coal mining area, the elasto-plastic mechanical damage constitutive functions and numerical model for the protective layer excavatio...Based on the occurrence features of Group B coal-seams at a coal mine in the Huainan coal mining area, the elasto-plastic mechanical damage constitutive functions and numerical model for the protective layer excavation were established. With the UDEC2D computer program, after the upper protective layer was mined, the stress field change trends, crack development, and expansion deformation trends of underlying coal rock seams in the floor of the working face were simulated and analyzed. The simulation results show the stress changes in coal rock seams, the evolution process of pre-cracks during the process of upper protective layer mining, the caved zone and fractured zone of the underlying coal rock seams. At the same time, the results from the actual investigation and analysis of protected layer deformation match the simulation values, which verifies the validity and accuracy of numerical simulation results. The study results have an important guiding significance for gas management in low permeability and high gas coal seams with similar mining conditions.展开更多
In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper c...In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper crust is actually a response to the plastic flow network in the lower lithosphere including the lower crust and lithospheric mantle. The existence of the unified plastic flow system confirms that the driving force for intraplate tectonic deformation results mainly from the compression of the India plate, while the long-range transmission of the force is carried out chiefly by means of plastic flow. The plastic flow network has a control over the intraplate tectonic deformation.展开更多
At room temperature,dry sliding wear tests were carried out using pin-on-disc test rig,in which the pin is made of vermicular iron and the disc is made of 40 Cr steel.The microstructures of the frictional surfaces for...At room temperature,dry sliding wear tests were carried out using pin-on-disc test rig,in which the pin is made of vermicular iron and the disc is made of 40 Cr steel.The microstructures of the frictional surfaces for the pin specimens were investigated.Under the action of both frictional heat and frictional shearing stress,aplastic deformation layer under the frictional surface is formed.The morphology and properties of the plastic deformation layer depend on specimen material,contact pressure and frictional shearing stress.In the plastic deformation layer,the phosphorous mass percent varies at different depth and results in different hardness.On the outer side of surface,the hardness is the biggest and the phosphorous mass percent is the highest.They become gradually small from outer side to inner side of the surface.展开更多
Different thickness of amorphous/nanocrystalline multi-layered structure can be used to modulate the strength and ductility of the composite materials.In this work,molecular dynamics simulations were conducted to stud...Different thickness of amorphous/nanocrystalline multi-layered structure can be used to modulate the strength and ductility of the composite materials.In this work,molecular dynamics simulations were conducted to study the thickness effect of nanocrystalline layer on mechanical properties and deformation behavior of the Cu64Zr36/Cu multi-layer structure.The stress-strain relationship,local stress,local strain,and deformation mechanism are investigated.The results reveal that the change of thickness of the crystalline layer significantly affects the mechanical properties and deformation behavior.As the strain at the elastic region,the amorphous Cu64Zr36 layer dominates the mechanical behavior,leading the fact that Young’s modulus,first yielding stress,and first yielding strain are close to that of Cu64Zr36 BMG.As the strain at the plastic region,the contribution of the crystalline layer on the mechanical behavior becomes more and more significant with increasing the thickness of the crystalline layer.For the thickness ratio(amorphous/crystalline)of 4,the shear band deformation of amorphous layer dominates the mechanical properties.For the thickness ratio is 1,the glide dislocation of the crystalline layer dominates the stress-strain behavior.展开更多
Unlike the magma intrusion model,the in- situ melting hypothesis advanced in the lastdecade regards the upper crustas a closed system,and granite as the resultof the materialswithin system changing from order (protoli...Unlike the magma intrusion model,the in- situ melting hypothesis advanced in the lastdecade regards the upper crustas a closed system,and granite as the resultof the materialswithin system changing from order (protolith) to disorder (melts) and to new order(granite) with the variations of entropy of the system.The various geological and geochemi-cal data from the Mesozoic granitesof southeast China are explained logically and systemical-ly by the hypothesis,concluding that they should be originated from the melting of pro-toliths.According to the hypothesis,melts generated from in- situ melting are of layer- likewithin the crustand batholithsare the protruding parts of the uppersurface of the layer (de-fined as the Melting Interface,MI for short) .On the basis the author tries to discuss thesource of heatfor the Mesozoic crustal melting in southeast China.展开更多
The cut-off wall in a clay-core rockfill dam built on a thick overburden layer is subjected to a large compressive pressure under the action of the loads such as the dead weight of both the dam and the overburden laye...The cut-off wall in a clay-core rockfill dam built on a thick overburden layer is subjected to a large compressive pressure under the action of the loads such as the dead weight of both the dam and the overburden layer, the frictional force induced by the differential settlement between the cut-off wall and surrounding soils, and the water pressure. Thus, reduction of the stress of the cut-off wall has become one of the main problems for consideration in engineering design. In this paper, numerical analysis of a core rockfill dam built on a thick overburden layer was conducted and some factors influencing the stress-strain behaviors of the cut-off wall were investigated. The factors include the improvement of the overburden layer, the modeling approach for interfacial contact between the cut-off wall and surrounding soils, the modulus of the cut-off wall concrete, and the connected pattern between the cut-off wall and the clay core. The result shows that improving the overburden layer,selecting plastic concrete with a low modulus and high strength, and optimizing the connection between the cut-off wall and the clay core of the dam are effective measures of reducing the deformations and compressive stresses of the cut-off wall. In addition, both the Goodman element and the mud-layer element are suitable for simulating the interfacial contact between the cut-off wall and surrounding soils.展开更多
Single-crystalline layered oxide materials for lithium-ion batteries are featured by their excellent capacity retention over their polycrystalline counterparts,making them sought-after cathode candidates.Their capacit...Single-crystalline layered oxide materials for lithium-ion batteries are featured by their excellent capacity retention over their polycrystalline counterparts,making them sought-after cathode candidates.Their capacity degradation,however,becomes more severe under high-voltage cycling,hindering many high-energy applications.It has long been speculated that the interplay among composition heterogeneity,lattice deformation,and redox stratification could be a driving force for the performance decay.The underlying mechanism,however,is not well-understood.In this study,we use X-ray microscopy to systematically examine single-crystalline NMC particles at the mesoscale.This technique allows us to capture detailed signals of diffraction,spectroscopy,and fluorescence,offering spatially resolved multimodal insights.Focusing on early high-voltage charging cycles,we uncover heterogeneities in valence states and lattice structures that are inherent rather than caused by electrochemical abuse.These heterogeneities are closely associated with compositional variations within individual particles.Our findings provide useful insights for refining material synthesis and processing for enhanced battery longevity and efficiency.展开更多
Field investigation and seismic section explanation showed that the Longmen Mountain Thrust Belt has obvious differential deformation: zonation, segmentation and stratification. Zonation means that, from NW to NE, th...Field investigation and seismic section explanation showed that the Longmen Mountain Thrust Belt has obvious differential deformation: zonation, segmentation and stratification. Zonation means that, from NW to NE, the Longmen Mountain Thrust Belt can be divided into the Songpan- Garz~ Tectonic Belt, ductile deformation belt, base involved thrust belt, frontal fold-thrust belt, and foreland depression. Segmentation means that it can be divided into five segments from north to south: the northern segment, the Anxian Transfer Zone, the center segment, the Guanxian Transfer Zone and the southern segment. Stratification means that the detachment layers partition the structural styles in profile. The detachment layers in the Longmen Mountain Thrust Belt can be classified into three categories: the deep-level detachment layers, including the crust-mantle system detachment layer, intracrustal detachment layer, and Presinian system basal detachment layer; the middle-level detachment layers, including Cambrian-Ordovician detachment layer, Silurian detachment layer, etc.; and shallow-level detachment layers, including Upper Triassic Xujiahe Formation detachment layer and the Jurassic detachment layers. The multi-level detachment layers have a very important effect on the shaping and evolution of Longmen Mountain Thrust Belt.展开更多
The Triassic Jialingjiang Formation and Leikoupo Formation are characterized by thick salt layers. Three tectono-stratigraphic sequences can be identified according to detachment layers of Lower-Middle Triassic salt b...The Triassic Jialingjiang Formation and Leikoupo Formation are characterized by thick salt layers. Three tectono-stratigraphic sequences can be identified according to detachment layers of Lower-Middle Triassic salt beds in the northern Sichuan Basin, i.e. the sub-salt sequence composed of Sinian to the Lower Triassic Feixianguan Formation, the salt sequence of the Lower Triassic Jialingjiang Formation and Mid-Triassic Leikoupou Formation, and the supra-salt sequence composed of continental clastics of the Upper-Triassic Xujiahe Formation, Jurassic and Cretaceous. A series of specific structural styles, such as intensively deformed belt of basement-involved imbricated thrust belt, basement-involved and salt-detached superimposed deformed belt, buried salt-related detached belt, duplex, piling triangle zone and pop-up, developed in the northern Sichuan Basin. The relatively thin salt beds, associated with the structural deformation of the northern Sichuan Basin, might act as a large decollement layer. The deformation mechanisms in the northern Sichuan Basin included regional compression and shortening, plastic flow and detachment, tectonic upwelling and erosion, gravitational sliding and spreading. The source rocks in the northern Sichuan Basin are strata underlying the salt layer, such as the Cambrian, Silurian and Permian. The structural deformation related to the Triassic salt controlled the styles of traps for hydrocarbon. The formation and development of hydrocarbon traps in the northern Sichuan Basin might have a bearing upon the Lower-Middle Triassic salt sequences which were favorable to the hydrocarbon accumulation and preservation. The salt layers in the Lower-Middle Triassic formed the main cap rocks and are favorable for the accumulation and preservation of hydrocarbon.展开更多
Deformation of the flexspline is the basis of analyzing tooth trajectory and designing tooth profile.Considering the tooth influence on the position of equivalent neutral layer,a piecewise method for calculating the d...Deformation of the flexspline is the basis of analyzing tooth trajectory and designing tooth profile.Considering the tooth influence on the position of equivalent neutral layer,a piecewise method for calculating the deformation of flexspline assembled with a cam wave generator is presented in this paper.Firstly,a mechanic model of a ring of uniform thickness in contact with a rigid cam is established.The displacements of the ring inside and outside an unknown wrapping angle are determined by the geometric constraints of the cam profile and the equilibrium rela-tionship,respectively.Meanwhile,the wrapping angle is solved according to the boundary conditions.The assembly forces are derived to investigate the circumferential elongation and strain.Then,considering the tooth effects on the neutral layer of flexspline,the tooth is positioned on the equivalent neutral layer,which is the non-elongation layer within one gear pitch but offset from the geometric mid-layer.The equivalent neutral layer is positioned by the empirical formula of the offset ratio,which is summarized by the orthogonal simulation on finite element models of racks.Finally,finite element models of a ring-shaped and a cup-shaped flexspline assembled with elliptical cam are established to verify the effectiveness and accuracy of the piecewise method.The results show that,compared with the geometric method,the tooth positioning deviation calculated by the piecewise method can be reduced by about 70%with a more accurate deformation description from the geometric condition and mechanic condition inside and outside the wrapping angle.展开更多
New structural and petrological data unveil a very complicated ductile deformation history of the Xiongdian-Suhe HP metamorphic unit, north-western Dabie Shan, central China. The fine-grained symplectic amphibolite-fa...New structural and petrological data unveil a very complicated ductile deformation history of the Xiongdian-Suhe HP metamorphic unit, north-western Dabie Shan, central China. The fine-grained symplectic amphibolite-facies assemblage and coronal structure enveloping eclogite-facies garnet, omphacite and phengite etc., representing strain-free decompression and retrogressive metamorphism, are considered as the main criteria to distinguish between the early-stage deformation under HP metamorphic conditions related to the continental deep subduction and collision, and the late-stage deformation under amphibolite to greenschist-facies conditions occurred in the post-eclogite exhumation processes. Two late-stages of widely developed, sequential ductile deformations D 3 and D 4, are recognized on the basis of penetrative fabrics and mineral aggregates in the Xiongdian-Suhe HP metamorphic unit, which shows clear, regionally, consistent overprinting relationships. D 3 fabrics are best preserved in the Suhe tract of low post-D 3 deformation intensity and characterized by steeply dipping layered mylonitic amphibolites associated with doubly vergent folds. They are attributed to a phase of tectonism linked to the initial exhumation of the HP rocks and involved crustal shortening with the development of upright structures and the widespread emplacement of garnet-bearing granites and felsic dikes. D 4 structures are attributed to the main episode of ductile extension (D 1 4) with a gently dipping foliation to the north and common intrafolial, recumbent folds in the Xiongdian tract, followed by normal sense top-to-the north ductile shearing (D 2 4) along an important tectonic boundary, the so-called Majiawa-Hexiwan fault (MHF), the westward continuation of the Balifan-Mozitan-Xiaotian fault (BMXF) of the northern Dabie Shan. It is indicated that the two stages of ductile deformation observed in the Xiongdian-Suhe HP metamorphic unit, reflecting the post-eclogite compressional or extrusion wedge formation, the subhorizontal ductile extension and crustal thinning as well as the top-to-the north shearing along the high-angle ductile shear zones responsible for exhumation of the HP unit as a coherent slab, are consistent with those recognized in the Dabie-Sulu UHP and HP metamorphic belts, suggesting that they were closely associated in time and space. The Xiongdian-Suhe HP metamorphic unit thus forms part of the Triassic (250-230 Ma) collision orogenic belt, and can not connect with the South Altun-North Qaidam-North Qinling UHP metamorphic belt formed during the Early Paleozoic (500-400 Ma).展开更多
Detachment structures occur widely in the crust, and it is the commonest and most important deformation type developed in the region between orogenic belts and basins. The 'comb-like' and 'toughlike' fold belts in...Detachment structures occur widely in the crust, and it is the commonest and most important deformation type developed in the region between orogenic belts and basins. The 'comb-like' and 'toughlike' fold belts in eastern Sichuan are caused by multi-layer detachment. The duplex structure is the most important deformation style in the region, exhibiting different characteristics from typical detachment structures. Different deformation styles, scales, and shortenings resulting from independent deformations of various detachment systems would lead to the phenomenon whereby most of the topographical heights in the region do not correspond to the structural heights in depth. Based on systematic structural analysis and combined with practical oil/gas prospecting, four types of structural traps are described from eastern Sichuan Province, which are: detachment and thrust trap; detachment folding trap; fault-flat blocking trap; and detachment layer trap. Meticulous studies on the deformation and distribution of detachment layers in the eastern Sichuan Province will contribute to oil/gas prospecting and selection of potential regions of marine-origin oil/gas prospecting in South China.展开更多
The effect of soil stratification was studied through numerical investigation based on the coupled model of solute transport in deformable unsaturated soil. The theoretical model implied two-way coupled excess pore pr...The effect of soil stratification was studied through numerical investigation based on the coupled model of solute transport in deformable unsaturated soil. The theoretical model implied two-way coupled excess pore pressure and soil deformation based on Biot's consolidation theory as well as a one-way coupled volatile pollutant concentration field developed from the advection-diffusion theory. Embedded in the model, the degree of saturation, fluid compressibility, self-weight of the soil matrix, porosity variance, longitudinal dispersion, and linear sorption were computed. Based on simulation results of a proposed three-layer landfill model using the finite element method, the multi-layer effects are discussed with regard to the hydraulic conductivity, shear modulus, degree of saturation, molecular diffusion coefficient, and thickness of each layer. Generally speaking, contaminants spread faster in a stratified field with a soft and highly permeable top layer; soil parameters of the top layer are more critical than the lower layers but controlling soil thicknesses will alter the results. This numerical investigation showed noticeable impacts of stratified soil properties on solute migration results, demonstrating the importance of correctly modeling layered soil instead of simply assuming the averaged properties across the soil profile.展开更多
A new B-spline surface reconstruction method from layer data based on deformable model is presented. An initial deformable surface, which is represented as a closed cylinder, is firstly given. The surface is subject t...A new B-spline surface reconstruction method from layer data based on deformable model is presented. An initial deformable surface, which is represented as a closed cylinder, is firstly given. The surface is subject to internal forces describing its implicit smoothness property and external forces attracting it toward the layer data points. And then finite element method is adopted to solve its energy minimization problem, which results a bicubic closed B-spline surface with C^2 continuity. The proposed method can provide a smoothness and accurate surface model directly from the layer data, without the need to fit cross-sectional curves and make them compatible. The feasibility of the proposed method is verified by the experimental results.展开更多
基金supported by the National Natural Science Foundation of China(No.52008351)the project funded by China Postdoctoral Science Foundation(No.2020TQ0250)+3 种基金the China National Railway Group Science and Technology Research Program(No.P2019G038-4)the Sichuan Science and Technology Program(No.2021YJ0539)the Open Foundation of MOE Key Laboratory of Engineering Structures of Heavy Haul Railway(Central South University)(No.2020JZZ01)the Open Foundation of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology)(No.SKLGP2021K019)。
文摘Large squeezing deformation of layered soft rock tunnel under high geo-stress has a significant time-dependent deformation behavior.In this paper,we studied the deformation mechanism during the construction period of deep-buried softrock tunnel by means of a combination of field observations and a numerical method.First,a new classification criterion for large deformations based on the power exponent variation law between the deformation and the strength-stress ratio is proposed.Then,the initial damage tensor reflecting the bedding plane(joint)distribution and an equivalent damage evolution equation derived from the viscoplastic strain are introduced based on the geometric research method,i.e.,a new rheological damage model(RDL model)of layered soft rock is established consisting of elastic,viscous,viscoelastic,viscoplastic and plastic elements.A field test was conducted on the Maoxian tunnel in Sichuan province,southwestern China,which is in broken phyllite(layered soft rock)under high geo-stress.The tunnel has experienced large deformation due to serious squeezing pressure,thus we adopted double primary support method to overcome the supporting structure failure problems.The rheological parameters of phyllite in the Maoxian tunnel were recognized by using SA-PSO optimization,and the RDL model does a good job in describing the time-dependent deformation behavior of a layered soft-rock tunnel under high geo-stress.Thus,the RDL model was used to investigate the supporting effect and bearing mechanism of the double primary support method.Compared with the single primary support method,the surrounding rock pressure,secondary lining force,surrounding rock deformation,and the depth of the damage to the rock mass was reduced by 40%-60%after the double primary support method was used.
基金Funded by the National Natural Science Foundation of China(No.50878169)the Project of State Key Laboratory of Refractories and Metallurgy(Wuhan University of Science and Technology)(No.G201407)
文摘Composite made of short-cut carbon fiber mat and vinyl ester resin was observed to be an effective sensor for tensile strain up to 6 000με. Based on its strain sensitivity, a skin-like sensitive layer which can continuously cover the structural surface to sense strain in large area was developed. The sensitive layer was applied to continuously monitor the deformation of a simply supported beam. The result indicates that the fractional change in electrical resistance of the sensitive layer reversibly reflects the beam deformation in each section and describes the distribution of the average strain of the beam. The effect of temperature change on the monitoring was studied by monitoring tests conducted at different temperatures ranging from 20 to 80 ℃, which reveals temperature sensitivity in the sensitive layer and the temperature dependence of the piezoresistive behavior when the temperature exceeds 50 ℃. By the application of differential conaection principle, a method for temperature compensation was established and the gauge factor for the monitoring was dramatically increased. This method was verified experimentally.
基金Project(51008188)supported by National Natural Science Foundation of ChinaProject(KLE-TJGE-B1302)supported by Key Laboratory Fund of Geotechnical and Underground Engineering of Ministry of Education,ChinaProject(SKLGDUEK1205)supported by Open Program of State Key Laboratory for Geomechanics and Deep Underground Engineering,China
文摘Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on the long-term deformation for underground structures. A three-dimensional consolidation analysis method under the asymmetric loads is developed for porous layered soil based on Biot's classical theory. Time-displacement effects can be fully considered in this work and the analytical solutions are obtained by the state space approach in the Cartesian coordinate. The Laplace and double Fourier integral transform are applied to the state variables in order to reduce the partial differential equations into algebraic differential equations and easily obtain the state space solution. Starting from the governing equations of saturated porous soil, the basic relationship of state space variables is established between the ground surface and the arbitrary depth in the integral transform domain. Based on the continuity conditions and boundary conditions of the multi-layered pore soil model, the multi-layered pore half-space solutions are obtained by means of the transfer matrix method and the inverse integral transforms. The accuracy of proposed method is demonstrated with existing classical solutions. The results indicate that the porous homogenous soils as well as the porous non-homogenous layered soils can be considered in this proposed method. When the consolidation time factor is 0.01, the value of immediate consolidation settlement coefficient calculated by the weighted homogenous solution is 27.4% bigger than the one calculated by the non-homogeneity solution. When the consolidation time factor is 0.05, the value of excess pore water pressure for the weighted homogenous solution is 27.2% bigger than the one for the non-homogeneity solution. It is shown that the material non-homogeneity has a great influence on the long-term settlements and the dissipation process of excess pore water pressure.
基金Supported by the National Natural Science Foundation of China (51004003) the Natural Science Foundation of Ministry of Education of Anhui Province (K J2010A091 )
文摘Based on the occurrence features of Group B coal-seams at a coal mine in the Huainan coal mining area, the elasto-plastic mechanical damage constitutive functions and numerical model for the protective layer excavation were established. With the UDEC2D computer program, after the upper protective layer was mined, the stress field change trends, crack development, and expansion deformation trends of underlying coal rock seams in the floor of the working face were simulated and analyzed. The simulation results show the stress changes in coal rock seams, the evolution process of pre-cracks during the process of upper protective layer mining, the caved zone and fractured zone of the underlying coal rock seams. At the same time, the results from the actual investigation and analysis of protected layer deformation match the simulation values, which verifies the validity and accuracy of numerical simulation results. The study results have an important guiding significance for gas management in low permeability and high gas coal seams with similar mining conditions.
基金This project (No. 49070196) is funded by the National Science Foundation of China.
文摘In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper crust is actually a response to the plastic flow network in the lower lithosphere including the lower crust and lithospheric mantle. The existence of the unified plastic flow system confirms that the driving force for intraplate tectonic deformation results mainly from the compression of the India plate, while the long-range transmission of the force is carried out chiefly by means of plastic flow. The plastic flow network has a control over the intraplate tectonic deformation.
基金Item Sponsored by Provincial Outstanding Youth Science Foundation of Henan in China(04120002100)Opening Foundationof State Key Laboratory of Solid Lubrication
文摘At room temperature,dry sliding wear tests were carried out using pin-on-disc test rig,in which the pin is made of vermicular iron and the disc is made of 40 Cr steel.The microstructures of the frictional surfaces for the pin specimens were investigated.Under the action of both frictional heat and frictional shearing stress,aplastic deformation layer under the frictional surface is formed.The morphology and properties of the plastic deformation layer depend on specimen material,contact pressure and frictional shearing stress.In the plastic deformation layer,the phosphorous mass percent varies at different depth and results in different hardness.On the outer side of surface,the hardness is the biggest and the phosphorous mass percent is the highest.They become gradually small from outer side to inner side of the surface.
文摘Different thickness of amorphous/nanocrystalline multi-layered structure can be used to modulate the strength and ductility of the composite materials.In this work,molecular dynamics simulations were conducted to study the thickness effect of nanocrystalline layer on mechanical properties and deformation behavior of the Cu64Zr36/Cu multi-layer structure.The stress-strain relationship,local stress,local strain,and deformation mechanism are investigated.The results reveal that the change of thickness of the crystalline layer significantly affects the mechanical properties and deformation behavior.As the strain at the elastic region,the amorphous Cu64Zr36 layer dominates the mechanical behavior,leading the fact that Young’s modulus,first yielding stress,and first yielding strain are close to that of Cu64Zr36 BMG.As the strain at the plastic region,the contribution of the crystalline layer on the mechanical behavior becomes more and more significant with increasing the thickness of the crystalline layer.For the thickness ratio(amorphous/crystalline)of 4,the shear band deformation of amorphous layer dominates the mechanical properties.For the thickness ratio is 1,the glide dislocation of the crystalline layer dominates the stress-strain behavior.
文摘Unlike the magma intrusion model,the in- situ melting hypothesis advanced in the lastdecade regards the upper crustas a closed system,and granite as the resultof the materialswithin system changing from order (protolith) to disorder (melts) and to new order(granite) with the variations of entropy of the system.The various geological and geochemi-cal data from the Mesozoic granitesof southeast China are explained logically and systemical-ly by the hypothesis,concluding that they should be originated from the melting of pro-toliths.According to the hypothesis,melts generated from in- situ melting are of layer- likewithin the crustand batholithsare the protruding parts of the uppersurface of the layer (de-fined as the Melting Interface,MI for short) .On the basis the author tries to discuss thesource of heatfor the Mesozoic crustal melting in southeast China.
基金the National Natural Science Foundation of China (Grant No.51379066)the Fundamental Research Funds for the Central Universities (Grant No.2016B03514)+1 种基金the National Key Technology Support Program (Grant No.2015BAB07B05)the Key Laboratory of Earth-Rock Dam Failure Mechanism and Safety Control Techniques (Grant No.YK913007).
文摘The cut-off wall in a clay-core rockfill dam built on a thick overburden layer is subjected to a large compressive pressure under the action of the loads such as the dead weight of both the dam and the overburden layer, the frictional force induced by the differential settlement between the cut-off wall and surrounding soils, and the water pressure. Thus, reduction of the stress of the cut-off wall has become one of the main problems for consideration in engineering design. In this paper, numerical analysis of a core rockfill dam built on a thick overburden layer was conducted and some factors influencing the stress-strain behaviors of the cut-off wall were investigated. The factors include the improvement of the overburden layer, the modeling approach for interfacial contact between the cut-off wall and surrounding soils, the modulus of the cut-off wall concrete, and the connected pattern between the cut-off wall and the clay core. The result shows that improving the overburden layer,selecting plastic concrete with a low modulus and high strength, and optimizing the connection between the cut-off wall and the clay core of the dam are effective measures of reducing the deformations and compressive stresses of the cut-off wall. In addition, both the Goodman element and the mud-layer element are suitable for simulating the interfacial contact between the cut-off wall and surrounding soils.
基金This research used resources 3-ID Hard x-ray nano probe and 18-ID full field x-ray imaging of the National Synchrotron Light Source IIa U.S.Department of Energy(DOE)Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No.DE-SC0012704+2 种基金Stanford Synchrotron Radiation Lightsource of the SLAC National Accelerator Laboratory is supported by the U.S.Department of Energy,Office of Science,Office of Basic Energy Sciences under Contract No.DE-AC02-76SF00515The work at the Central Universities of Central South University was sponsored by the National Natural Science Foundation of China(52172264)Fundamental Research Funds from Central Universities of Central South University.We would like to extend our gratitude to Yinjia Zhang and Liangjin Gong from Ke Du's group at Central South University for their technical support and useful discussions.
文摘Single-crystalline layered oxide materials for lithium-ion batteries are featured by their excellent capacity retention over their polycrystalline counterparts,making them sought-after cathode candidates.Their capacity degradation,however,becomes more severe under high-voltage cycling,hindering many high-energy applications.It has long been speculated that the interplay among composition heterogeneity,lattice deformation,and redox stratification could be a driving force for the performance decay.The underlying mechanism,however,is not well-understood.In this study,we use X-ray microscopy to systematically examine single-crystalline NMC particles at the mesoscale.This technique allows us to capture detailed signals of diffraction,spectroscopy,and fluorescence,offering spatially resolved multimodal insights.Focusing on early high-voltage charging cycles,we uncover heterogeneities in valence states and lattice structures that are inherent rather than caused by electrochemical abuse.These heterogeneities are closely associated with compositional variations within individual particles.Our findings provide useful insights for refining material synthesis and processing for enhanced battery longevity and efficiency.
基金support from:National Natural Science Foundation of China (Grant no.40672143,40472107,40172076)National Major Fundamental Research and Development Project (Grant no.2005CB422107,G1999043305)+1 种基金Development Foundation of Key Laboratory for Hydrocarbon Accumulation of Education Ministry (Grant no.2003-01)Project of Southern Exploration and Development Division Company,SINOPEC (2003-04).
文摘Field investigation and seismic section explanation showed that the Longmen Mountain Thrust Belt has obvious differential deformation: zonation, segmentation and stratification. Zonation means that, from NW to NE, the Longmen Mountain Thrust Belt can be divided into the Songpan- Garz~ Tectonic Belt, ductile deformation belt, base involved thrust belt, frontal fold-thrust belt, and foreland depression. Segmentation means that it can be divided into five segments from north to south: the northern segment, the Anxian Transfer Zone, the center segment, the Guanxian Transfer Zone and the southern segment. Stratification means that the detachment layers partition the structural styles in profile. The detachment layers in the Longmen Mountain Thrust Belt can be classified into three categories: the deep-level detachment layers, including the crust-mantle system detachment layer, intracrustal detachment layer, and Presinian system basal detachment layer; the middle-level detachment layers, including Cambrian-Ordovician detachment layer, Silurian detachment layer, etc.; and shallow-level detachment layers, including Upper Triassic Xujiahe Formation detachment layer and the Jurassic detachment layers. The multi-level detachment layers have a very important effect on the shaping and evolution of Longmen Mountain Thrust Belt.
基金the National Natural Science Foundation of China(Grant No.40672143,40472107 and 40172076)the National Major Fundamental Research and Development Project(Grant No.2005CB422107 and G1999043305)+1 种基金Development Foundation of Key Laboratory for Hydrocarbon Accumulation of the Education Ministry(Grant No.2003-01)Project of Southern Exploration and Development Division Company,SINOPEC(2003-04).
文摘The Triassic Jialingjiang Formation and Leikoupo Formation are characterized by thick salt layers. Three tectono-stratigraphic sequences can be identified according to detachment layers of Lower-Middle Triassic salt beds in the northern Sichuan Basin, i.e. the sub-salt sequence composed of Sinian to the Lower Triassic Feixianguan Formation, the salt sequence of the Lower Triassic Jialingjiang Formation and Mid-Triassic Leikoupou Formation, and the supra-salt sequence composed of continental clastics of the Upper-Triassic Xujiahe Formation, Jurassic and Cretaceous. A series of specific structural styles, such as intensively deformed belt of basement-involved imbricated thrust belt, basement-involved and salt-detached superimposed deformed belt, buried salt-related detached belt, duplex, piling triangle zone and pop-up, developed in the northern Sichuan Basin. The relatively thin salt beds, associated with the structural deformation of the northern Sichuan Basin, might act as a large decollement layer. The deformation mechanisms in the northern Sichuan Basin included regional compression and shortening, plastic flow and detachment, tectonic upwelling and erosion, gravitational sliding and spreading. The source rocks in the northern Sichuan Basin are strata underlying the salt layer, such as the Cambrian, Silurian and Permian. The structural deformation related to the Triassic salt controlled the styles of traps for hydrocarbon. The formation and development of hydrocarbon traps in the northern Sichuan Basin might have a bearing upon the Lower-Middle Triassic salt sequences which were favorable to the hydrocarbon accumulation and preservation. The salt layers in the Lower-Middle Triassic formed the main cap rocks and are favorable for the accumulation and preservation of hydrocarbon.
基金Supported by National Natural Science Foundation of China(Grant No.51575390)Tianjin Municipal Natural Science Foundation of China(Grant Nos.19JCZDJC38700,18JCZDJC39000).
文摘Deformation of the flexspline is the basis of analyzing tooth trajectory and designing tooth profile.Considering the tooth influence on the position of equivalent neutral layer,a piecewise method for calculating the deformation of flexspline assembled with a cam wave generator is presented in this paper.Firstly,a mechanic model of a ring of uniform thickness in contact with a rigid cam is established.The displacements of the ring inside and outside an unknown wrapping angle are determined by the geometric constraints of the cam profile and the equilibrium rela-tionship,respectively.Meanwhile,the wrapping angle is solved according to the boundary conditions.The assembly forces are derived to investigate the circumferential elongation and strain.Then,considering the tooth effects on the neutral layer of flexspline,the tooth is positioned on the equivalent neutral layer,which is the non-elongation layer within one gear pitch but offset from the geometric mid-layer.The equivalent neutral layer is positioned by the empirical formula of the offset ratio,which is summarized by the orthogonal simulation on finite element models of racks.Finally,finite element models of a ring-shaped and a cup-shaped flexspline assembled with elliptical cam are established to verify the effectiveness and accuracy of the piecewise method.The results show that,compared with the geometric method,the tooth positioning deviation calculated by the piecewise method can be reduced by about 70%with a more accurate deformation description from the geometric condition and mechanic condition inside and outside the wrapping angle.
文摘New structural and petrological data unveil a very complicated ductile deformation history of the Xiongdian-Suhe HP metamorphic unit, north-western Dabie Shan, central China. The fine-grained symplectic amphibolite-facies assemblage and coronal structure enveloping eclogite-facies garnet, omphacite and phengite etc., representing strain-free decompression and retrogressive metamorphism, are considered as the main criteria to distinguish between the early-stage deformation under HP metamorphic conditions related to the continental deep subduction and collision, and the late-stage deformation under amphibolite to greenschist-facies conditions occurred in the post-eclogite exhumation processes. Two late-stages of widely developed, sequential ductile deformations D 3 and D 4, are recognized on the basis of penetrative fabrics and mineral aggregates in the Xiongdian-Suhe HP metamorphic unit, which shows clear, regionally, consistent overprinting relationships. D 3 fabrics are best preserved in the Suhe tract of low post-D 3 deformation intensity and characterized by steeply dipping layered mylonitic amphibolites associated with doubly vergent folds. They are attributed to a phase of tectonism linked to the initial exhumation of the HP rocks and involved crustal shortening with the development of upright structures and the widespread emplacement of garnet-bearing granites and felsic dikes. D 4 structures are attributed to the main episode of ductile extension (D 1 4) with a gently dipping foliation to the north and common intrafolial, recumbent folds in the Xiongdian tract, followed by normal sense top-to-the north ductile shearing (D 2 4) along an important tectonic boundary, the so-called Majiawa-Hexiwan fault (MHF), the westward continuation of the Balifan-Mozitan-Xiaotian fault (BMXF) of the northern Dabie Shan. It is indicated that the two stages of ductile deformation observed in the Xiongdian-Suhe HP metamorphic unit, reflecting the post-eclogite compressional or extrusion wedge formation, the subhorizontal ductile extension and crustal thinning as well as the top-to-the north shearing along the high-angle ductile shear zones responsible for exhumation of the HP unit as a coherent slab, are consistent with those recognized in the Dabie-Sulu UHP and HP metamorphic belts, suggesting that they were closely associated in time and space. The Xiongdian-Suhe HP metamorphic unit thus forms part of the Triassic (250-230 Ma) collision orogenic belt, and can not connect with the South Altun-North Qaidam-North Qinling UHP metamorphic belt formed during the Early Paleozoic (500-400 Ma).
基金funded by the Science and Technology Research and Development Program of the China Petroleum & Chemical Corporation(No.P06088)the Nonprofit Special Research Program(No.200811015)the Land Resource Survey Project of the Ministry of Land and Natural Resources,China(No.1212010782003)
文摘Detachment structures occur widely in the crust, and it is the commonest and most important deformation type developed in the region between orogenic belts and basins. The 'comb-like' and 'toughlike' fold belts in eastern Sichuan are caused by multi-layer detachment. The duplex structure is the most important deformation style in the region, exhibiting different characteristics from typical detachment structures. Different deformation styles, scales, and shortenings resulting from independent deformations of various detachment systems would lead to the phenomenon whereby most of the topographical heights in the region do not correspond to the structural heights in depth. Based on systematic structural analysis and combined with practical oil/gas prospecting, four types of structural traps are described from eastern Sichuan Province, which are: detachment and thrust trap; detachment folding trap; fault-flat blocking trap; and detachment layer trap. Meticulous studies on the deformation and distribution of detachment layers in the eastern Sichuan Province will contribute to oil/gas prospecting and selection of potential regions of marine-origin oil/gas prospecting in South China.
文摘The effect of soil stratification was studied through numerical investigation based on the coupled model of solute transport in deformable unsaturated soil. The theoretical model implied two-way coupled excess pore pressure and soil deformation based on Biot's consolidation theory as well as a one-way coupled volatile pollutant concentration field developed from the advection-diffusion theory. Embedded in the model, the degree of saturation, fluid compressibility, self-weight of the soil matrix, porosity variance, longitudinal dispersion, and linear sorption were computed. Based on simulation results of a proposed three-layer landfill model using the finite element method, the multi-layer effects are discussed with regard to the hydraulic conductivity, shear modulus, degree of saturation, molecular diffusion coefficient, and thickness of each layer. Generally speaking, contaminants spread faster in a stratified field with a soft and highly permeable top layer; soil parameters of the top layer are more critical than the lower layers but controlling soil thicknesses will alter the results. This numerical investigation showed noticeable impacts of stratified soil properties on solute migration results, demonstrating the importance of correctly modeling layered soil instead of simply assuming the averaged properties across the soil profile.
基金This project is supported by National Natural Science Foundation of China(No. 10272033) and Provincial Natural Science Foundation of Guangdong,China(No.04105385).
文摘A new B-spline surface reconstruction method from layer data based on deformable model is presented. An initial deformable surface, which is represented as a closed cylinder, is firstly given. The surface is subject to internal forces describing its implicit smoothness property and external forces attracting it toward the layer data points. And then finite element method is adopted to solve its energy minimization problem, which results a bicubic closed B-spline surface with C^2 continuity. The proposed method can provide a smoothness and accurate surface model directly from the layer data, without the need to fit cross-sectional curves and make them compatible. The feasibility of the proposed method is verified by the experimental results.