To reduce harmful sulfur content in lubricant additives, making use of isosterism has been shown to be an effective strategy. When thiobenzothiazole compounds were used as templates, the exchange of sulfur atoms in th...To reduce harmful sulfur content in lubricant additives, making use of isosterism has been shown to be an effective strategy. When thiobenzothiazole compounds were used as templates, the exchange of sulfur atoms in the thiazole ring with oxygen atoms and NH groups produced twelve isosteres. Similarly, 2-benzothiazole- S-carboxylic acid esters were used as template molecules to produce six isosteres. About 30% of the isosteres exhibited a satisfactory deviation of ±5% relative to the template, ignoring the specific changes in the base oils, the differences in molecular structure, and the friction or wear properties. The template molecules and isosteres in triisodecyl trimellitate exhibited better tribological properties than in trimethylolpropane trioleate or bis(2- ethylhexyl) adipate. Comparative molecular field analysis(CoM FA)- and comparative molecular similarity index analysis(CoMSIA)-quantitative structure tribo-ability relationship(QSTR) models were employed to study the correlation of molecular structures between the base oils and additives. The models indicate that the higher the structural similarities of the base oils and additives are, the more synergetic the molecular force fields of the lubricating system are; the molecular force fields creating synergistic effects will improve tribological performance.展开更多
Lanthanum-doped muscovite(MC) composite particles(hereinafter abbreviated as La-MC) were prepared by the mechanical solid-state-chemistry-reaction method, followed by surface modification with oleic acid. The microstr...Lanthanum-doped muscovite(MC) composite particles(hereinafter abbreviated as La-MC) were prepared by the mechanical solid-state-chemistry-reaction method, followed by surface modification with oleic acid. The microstructure of materials was characterized by SEM, XRD, EDS and FTIR. Furthermore, the friction-reduction and anti-wear properties of MC and La-MC as lubricant additives in lithium grease were evaluated using a four-ball friction and wear tester. The results showed that La(OH)_3 nanoparticles were coated on the surface of muscovite. Both MC and La-MC can effectively improve the friction-reduction and anti-wear properties of lithium grease and La-MC presents better tribological properties than MC. The excellent tribological properties of La-MC can be attributed to the formation of the adsorbed La-MC film and the chemical reaction film mainly composed of Fe_2O_3 and SiO_2 on the worn surface, as well as the catalysis of lanthanum element during the friction process.展开更多
This study presents a nitrogen-doped microporous carbon nanospheres(N@MCNs)prepared by a facile polymerization–carbonization process using low-cost styrene.The N element in situ introduces polystyrene(PS)nanospheres ...This study presents a nitrogen-doped microporous carbon nanospheres(N@MCNs)prepared by a facile polymerization–carbonization process using low-cost styrene.The N element in situ introduces polystyrene(PS)nanospheres via emulsion polymerization of styrene with cyanuric chloride as crosslinking agent,and then carbonization obtains N@MCNs.The as-prepared carbon nanospheres possess the complete spherical structure and adjustable nitrogen amount by controlling the relative proportion of tetrachloromethane and cyanuric chloride.The friction performance of N@MCNs as lubricating oil additives was surveyed utilizing the friction experiment of ball-disc structure.The results showed that N@MCNs exhibit superb reduction performance of friction and wear.When the addition of N@MCNs was 0.06 wt%,the friction coefficient of PAO-10 decreased from 0.188 to 0.105,and the wear volume reduced by 94.4%.The width and depth of wear marks of N@MCNs decreased by 49.2% and 94.5%,respectively.The carrying capacity of load was rocketed from 100 to 400 N concurrently.Through the analysis of the lubrication mechanism,the result manifested that the prepared N@MCNs enter clearance of the friction pair,transform the sliding friction into the mixed friction of sliding and rolling,and repair the contact surface through the repair effect.Furthermore,the tribochemical reaction between nanoparticles and friction pairs forms a protective film containing nitride and metal oxides,which can avert direct contact with the matrix and improve the tribological properties.This experiment showed that nitrogen-doped polystyrene-based carbon nanospheres prepared by in-situ doping are the promising materials for wear resistance and reducing friction.This preparing method can be ulteriorly expanded to multi-element co-permeable materials.Nitrogen and boron co-doped carbon nanospheres(B,N@MCNs)were prepared by mixed carbonization of N-enriched PS and boric acid,and exhibited high load carrying capacity and good tribological properties.展开更多
By using PAO-10 as the base oil, the tribological behavior of 11 additives under high vacuum condition was evaluated. By adopting some surface analytical instruments, such as scanning electron microscopy(SEM), energy ...By using PAO-10 as the base oil, the tribological behavior of 11 additives under high vacuum condition was evaluated. By adopting some surface analytical instruments, such as scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS), the tribological mechanisms of these additives were studied. In air, O_2 can react with metal to form metal oxide that can protect the surfaces of rubbing pair during the tribological tests. According to the theory of the competitive adsorption, the function of some active elements is weakened. In a vacuum environment, the additives contributed more to the lubrication performance. The sulfur-containing additives could react with Fe to produce Fe Sx and "M—C" bonds("M" represents metal). They both had contributions to the lubrication. As for the phosphorus-containing additives, they only generated the phosphates during the tests. When the sulfur and phosphorus-containing additives were applied, the generated phosphates and Fe Sx had the primary contribution to the lubrication performance during the tests.展开更多
This study prepared four types of ionic liquid-modified polypyrrole(IL-modified PPy)as conductive additives and investigated their tribological performance and conductivity in polytetrafluoroethylene lubricating greas...This study prepared four types of ionic liquid-modified polypyrrole(IL-modified PPy)as conductive additives and investigated their tribological performance and conductivity in polytetrafluoroethylene lubricating grease.The results indicated that IL-modified PPy effectively enhanced the anti-wear performance and conductivity of the base grease.Among the additives,1-octyl-3-methylimidazolium tetrafluoroborate([OMIm][BF4])modified PPy showed superior performance compared to the other three additives,with the best effect observed at a mass fraction of 0.5%.X-ray photoelectron spectroscopy analysis revealed that IL-modified PPy forms a stable friction chemical film during the friction process,effectively enhancing the lubrication performance and conductivity of the base grease.This indicates broad potential applications in the field of conductive lubrication.展开更多
Despite excellent tribological behaviors of ionic liquids (ILs) as lubricating oils, their friction-reducing and anti-wear properties must be improved when they are used under severe conditions. There are only a few r...Despite excellent tribological behaviors of ionic liquids (ILs) as lubricating oils, their friction-reducing and anti-wear properties must be improved when they are used under severe conditions. There are only a few reports exploring additives for ILs. Here, MoS2 and WS2 quantum dots (QDs, with particle size less than 10 nm) are prepared via a facile green technique, and they are dispersed in 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm]PF6), forming homogeneous dispersions exhibiting long-term stabilities. Tribological test results indicate that the addition of MoS2 and WS2 QDs in the IL can significantly enhance the friction-reducing and anti-wear abilities of the neat IL under a constant load of 500 N and a temperature of 150 °C. The exceptional tribological properties of these additives in the IL are ascribed to the formation of protective films, which are produced not only by the physical absorption of MoS2 and WS2 QDs at the steel/steel contact surfaces, but also by the tribochemical reaction between MoS2 or WS2 and the iron atoms/iron oxide species.展开更多
Cu-doped muscovite(Mu) composite particles, abbreviated as Mu/Cu, were prepared via liquid phase reduction method. The morphologies, phase composition and elementary distribution of the as-prepared Mu/Cu and raw mus...Cu-doped muscovite(Mu) composite particles, abbreviated as Mu/Cu, were prepared via liquid phase reduction method. The morphologies, phase composition and elementary distribution of the as-prepared Mu/Cu and raw muscovite particles were characterized by means of scalmmg electron microscope(SEM), X-ray diffraction(XRD) and energy dispersive spectrometry(EDS). The tirbological properties of Mu/Cu and Mu as lubricant additives in lithium grease were evaluated on a block-ring tribomachine. The roughness, 2D and 3D morphologies and elementary distribution of block worn surface were analyzed to explore the tribogical mechanism. The results show that muscovite are evenly coated by the cubic Cu nanoparticles in composite particles. Both Mu/Cu and Mu can effectively improve the tirbological properties of lithium grease and Mu/Cu exhibits better tribological performance than Mu. The friction coefficient of Mu/Cu is decreased by 69.2% as compared to that of lithium grease. The layer structure of muscovite is synergistic with Cu nanoparticles in contribution to the formation of lubricant film mainly consisting of O, Si, Fe, Cu as well as Al elements on the block worn surface thereby further reducing the friction and wear.展开更多
Neodymium dialkylthiophosphate (NdDDP) with alkyls of isopropyl and isooctyl were synthesized by exchanged reaction respectively. The structures of the two NdDDPs were determined using IR and XRD. Properties of anti...Neodymium dialkylthiophosphate (NdDDP) with alkyls of isopropyl and isooctyl were synthesized by exchanged reaction respectively. The structures of the two NdDDPs were determined using IR and XRD. Properties of anti-wear and friction-reducing of the two additives were investigated with four ball experiment and the commercial anti-wear additive ZDDP was selected as control. The elemental analysis of the wear scars after 10 s friction at low stress were investigated by EDXA (Energy Dispersion Analysis of X-ray). Primary results showed that the NdDDPs possess better lubrication ability than ZDDP. This might mainly be contributed to the formation of a boundary film containing Nd2O3, FeS and sulphate, phosphate, organo-sulfide, etc., and a neodymium-rich diffused layer which changes the crystal structure of the surface of friction materials.展开更多
基金supported by National Natural Science Foundation of China(Grant No.51675395)
文摘To reduce harmful sulfur content in lubricant additives, making use of isosterism has been shown to be an effective strategy. When thiobenzothiazole compounds were used as templates, the exchange of sulfur atoms in the thiazole ring with oxygen atoms and NH groups produced twelve isosteres. Similarly, 2-benzothiazole- S-carboxylic acid esters were used as template molecules to produce six isosteres. About 30% of the isosteres exhibited a satisfactory deviation of ±5% relative to the template, ignoring the specific changes in the base oils, the differences in molecular structure, and the friction or wear properties. The template molecules and isosteres in triisodecyl trimellitate exhibited better tribological properties than in trimethylolpropane trioleate or bis(2- ethylhexyl) adipate. Comparative molecular field analysis(CoM FA)- and comparative molecular similarity index analysis(CoMSIA)-quantitative structure tribo-ability relationship(QSTR) models were employed to study the correlation of molecular structures between the base oils and additives. The models indicate that the higher the structural similarities of the base oils and additives are, the more synergetic the molecular force fields of the lubricating system are; the molecular force fields creating synergistic effects will improve tribological performance.
基金supported by the Postdoctoral Science Foundation of China(XM2013018)Logistics Project Foundation of China(Oil 20070209)
文摘Lanthanum-doped muscovite(MC) composite particles(hereinafter abbreviated as La-MC) were prepared by the mechanical solid-state-chemistry-reaction method, followed by surface modification with oleic acid. The microstructure of materials was characterized by SEM, XRD, EDS and FTIR. Furthermore, the friction-reduction and anti-wear properties of MC and La-MC as lubricant additives in lithium grease were evaluated using a four-ball friction and wear tester. The results showed that La(OH)_3 nanoparticles were coated on the surface of muscovite. Both MC and La-MC can effectively improve the friction-reduction and anti-wear properties of lithium grease and La-MC presents better tribological properties than MC. The excellent tribological properties of La-MC can be attributed to the formation of the adsorbed La-MC film and the chemical reaction film mainly composed of Fe_2O_3 and SiO_2 on the worn surface, as well as the catalysis of lanthanum element during the friction process.
基金supported by the National Natural Science Foundation of China(Nos.U21A2046 and 51972272)the Western Light Project of CAS(No.xbzg-zdsys-202118).
文摘This study presents a nitrogen-doped microporous carbon nanospheres(N@MCNs)prepared by a facile polymerization–carbonization process using low-cost styrene.The N element in situ introduces polystyrene(PS)nanospheres via emulsion polymerization of styrene with cyanuric chloride as crosslinking agent,and then carbonization obtains N@MCNs.The as-prepared carbon nanospheres possess the complete spherical structure and adjustable nitrogen amount by controlling the relative proportion of tetrachloromethane and cyanuric chloride.The friction performance of N@MCNs as lubricating oil additives was surveyed utilizing the friction experiment of ball-disc structure.The results showed that N@MCNs exhibit superb reduction performance of friction and wear.When the addition of N@MCNs was 0.06 wt%,the friction coefficient of PAO-10 decreased from 0.188 to 0.105,and the wear volume reduced by 94.4%.The width and depth of wear marks of N@MCNs decreased by 49.2% and 94.5%,respectively.The carrying capacity of load was rocketed from 100 to 400 N concurrently.Through the analysis of the lubrication mechanism,the result manifested that the prepared N@MCNs enter clearance of the friction pair,transform the sliding friction into the mixed friction of sliding and rolling,and repair the contact surface through the repair effect.Furthermore,the tribochemical reaction between nanoparticles and friction pairs forms a protective film containing nitride and metal oxides,which can avert direct contact with the matrix and improve the tribological properties.This experiment showed that nitrogen-doped polystyrene-based carbon nanospheres prepared by in-situ doping are the promising materials for wear resistance and reducing friction.This preparing method can be ulteriorly expanded to multi-element co-permeable materials.Nitrogen and boron co-doped carbon nanospheres(B,N@MCNs)were prepared by mixed carbonization of N-enriched PS and boric acid,and exhibited high load carrying capacity and good tribological properties.
基金Financial support from the SINOPEC Research Program(No.ST13164-19]) is gratefully acknowledged
文摘By using PAO-10 as the base oil, the tribological behavior of 11 additives under high vacuum condition was evaluated. By adopting some surface analytical instruments, such as scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS), the tribological mechanisms of these additives were studied. In air, O_2 can react with metal to form metal oxide that can protect the surfaces of rubbing pair during the tribological tests. According to the theory of the competitive adsorption, the function of some active elements is weakened. In a vacuum environment, the additives contributed more to the lubrication performance. The sulfur-containing additives could react with Fe to produce Fe Sx and "M—C" bonds("M" represents metal). They both had contributions to the lubrication. As for the phosphorus-containing additives, they only generated the phosphates during the tests. When the sulfur and phosphorus-containing additives were applied, the generated phosphates and Fe Sx had the primary contribution to the lubrication performance during the tests.
基金The authors would like to appreciate the financial support extended for this academic work by the Beijing Natural Science Foundation(Grants 2172053,2232066)the Open Project Foundation of State Key Laboratory of Solid Lubrication(Grant LSL-2212).
文摘This study prepared four types of ionic liquid-modified polypyrrole(IL-modified PPy)as conductive additives and investigated their tribological performance and conductivity in polytetrafluoroethylene lubricating grease.The results indicated that IL-modified PPy effectively enhanced the anti-wear performance and conductivity of the base grease.Among the additives,1-octyl-3-methylimidazolium tetrafluoroborate([OMIm][BF4])modified PPy showed superior performance compared to the other three additives,with the best effect observed at a mass fraction of 0.5%.X-ray photoelectron spectroscopy analysis revealed that IL-modified PPy forms a stable friction chemical film during the friction process,effectively enhancing the lubrication performance and conductivity of the base grease.This indicates broad potential applications in the field of conductive lubrication.
基金The authors are thankful for financial support of this work by National Key Research and Development Program of China(No.2018YFBO703802)National NaturalScienceFoundationofChina(Nos.NSFC51875553 and 51775536).
文摘Despite excellent tribological behaviors of ionic liquids (ILs) as lubricating oils, their friction-reducing and anti-wear properties must be improved when they are used under severe conditions. There are only a few reports exploring additives for ILs. Here, MoS2 and WS2 quantum dots (QDs, with particle size less than 10 nm) are prepared via a facile green technique, and they are dispersed in 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm]PF6), forming homogeneous dispersions exhibiting long-term stabilities. Tribological test results indicate that the addition of MoS2 and WS2 QDs in the IL can significantly enhance the friction-reducing and anti-wear abilities of the neat IL under a constant load of 500 N and a temperature of 150 °C. The exceptional tribological properties of these additives in the IL are ascribed to the formation of protective films, which are produced not only by the physical absorption of MoS2 and WS2 QDs at the steel/steel contact surfaces, but also by the tribochemical reaction between MoS2 or WS2 and the iron atoms/iron oxide species.
文摘Cu-doped muscovite(Mu) composite particles, abbreviated as Mu/Cu, were prepared via liquid phase reduction method. The morphologies, phase composition and elementary distribution of the as-prepared Mu/Cu and raw muscovite particles were characterized by means of scalmmg electron microscope(SEM), X-ray diffraction(XRD) and energy dispersive spectrometry(EDS). The tirbological properties of Mu/Cu and Mu as lubricant additives in lithium grease were evaluated on a block-ring tribomachine. The roughness, 2D and 3D morphologies and elementary distribution of block worn surface were analyzed to explore the tribogical mechanism. The results show that muscovite are evenly coated by the cubic Cu nanoparticles in composite particles. Both Mu/Cu and Mu can effectively improve the tirbological properties of lithium grease and Mu/Cu exhibits better tribological performance than Mu. The friction coefficient of Mu/Cu is decreased by 69.2% as compared to that of lithium grease. The layer structure of muscovite is synergistic with Cu nanoparticles in contribution to the formation of lubricant film mainly consisting of O, Si, Fe, Cu as well as Al elements on the block worn surface thereby further reducing the friction and wear.
文摘Neodymium dialkylthiophosphate (NdDDP) with alkyls of isopropyl and isooctyl were synthesized by exchanged reaction respectively. The structures of the two NdDDPs were determined using IR and XRD. Properties of anti-wear and friction-reducing of the two additives were investigated with four ball experiment and the commercial anti-wear additive ZDDP was selected as control. The elemental analysis of the wear scars after 10 s friction at low stress were investigated by EDXA (Energy Dispersion Analysis of X-ray). Primary results showed that the NdDDPs possess better lubrication ability than ZDDP. This might mainly be contributed to the formation of a boundary film containing Nd2O3, FeS and sulphate, phosphate, organo-sulfide, etc., and a neodymium-rich diffused layer which changes the crystal structure of the surface of friction materials.