Bolted joints play a more and more important role in the structure with lighter weight and heavier load.This paper aims to provide an overview of different experimental approaches for the dynamic behavior of structure...Bolted joints play a more and more important role in the structure with lighter weight and heavier load.This paper aims to provide an overview of different experimental approaches for the dynamic behavior of structures in the presence of bolted joints,especially the energy dissipation or damping at frictional interfaces.The comprehension of energy dissipation mechanisms due to friction is provided first,while the key parameters and the measurement techniques,such as the excitation force,the preload of the bolt,or the pressure at the interfaces,are briefly introduced.Secondly,the round-robin systems aim to measure the hysteresis parameters of the frictional joints under tangential loads are reviewed,summarizing the basic theory and the strategies to apply the excitation force or acquire the response in different testing systems.Followed by parameter identification strategies for bolted structures,the test rigs with one or more simplified bolted joints are summarized to give an insight into the understanding of typical characteristics of bolted structures,which are affected by the presence of friction.More complex test rigs hosting real-like or actual engineering structures with bolted lap or flange joints are also introduced to show the identification process of the dynamic characteristics of bolted connections employed in specific applications.Based on the review paper,researchers can get the basic knowledge about the experimental systems of the bolted structures,especially several classical round robin systems,such as the Gaul resonator and widely used Brake-Reußbeam system.Readers can take advantage of this background for more creative and effective future studies,make more progress on the study of assembled structures and understand the influence of bolting frictional connections on the dynamic response better.展开更多
To study the seismic performance and load-transferring mechanism of an innovative precast shear wall(IPSW) involving vertical joints, an experimental investigation and theoretical analysis were successively conducted ...To study the seismic performance and load-transferring mechanism of an innovative precast shear wall(IPSW) involving vertical joints, an experimental investigation and theoretical analysis were successively conducted on two test walls. The test results confirm the feasibility of the novel joints as well as the favorable seismic performance of the walls, even though certain optimization measures should be taken to improve the ductility. The load-transferring mechanism subsequently is theoretically investigated based on the experimental study. The theoretical results show the load-transferring route of the novel joints is concise and definite. During the elastic stage, the vertical shear stress in the connecting steel frame(CSF) distributes uniformly; and each high-strength bolt(HSB)primarily delivers vertical shear force. However, the stress in the CSF redistributes when the walls develop into the elastic-plastic stage. At the ultimate state, the vertical shear stress and horizontal normal stress in the CSF distribute linearly; and the HSBs at both ends of the CSF transfer the maximum shear forces.展开更多
By means of numerical simulation, the roadway deformation affected by joints was analyzed and the pre-tensioned bolts for reinforcing roadway roof in jointed rock mass was studied. The results show that the roadway ro...By means of numerical simulation, the roadway deformation affected by joints was analyzed and the pre-tensioned bolts for reinforcing roadway roof in jointed rock mass was studied. The results show that the roadway roof deformation increases gradually with the accretion of joint length, the increase of joint number, the de- crease of intervals, angles and friction angles of joints. The increase is obvious at beginning and then tends slowly. After pre-tensioned bolts are used, roadway roof deformations reduce obviously, and the supporting action of pre-tensioned bolts is more remarkable with accretion of joint length, increasing of joint number, reducing of joint interval, decreasing of joints angle and joint friction angle, and increasing of joint number that bolts drilling through. With comparison of different cases, the joints supporting effect is more remarkable at a small angel. It indicates that the supporting mechanism of pre-tensioned bolts is to reinforce weak faces, such as joints. The more joints the roof includes, the more visible the pre-tensioned bolts strengthening effect is.展开更多
A bolted joint may be in a state of continuous fretting friction and wear under random oscillatory loading,which makes the bolted joint prone to loosening.Therefore,it is essential to find a way to monitor the contact...A bolted joint may be in a state of continuous fretting friction and wear under random oscillatory loading,which makes the bolted joint prone to loosening.Therefore,it is essential to find a way to monitor the contact state of a bolted joint on time and handle it adeptly.Acoustic emission(AE)signals will be generated during the reciprocating friction of the bolted joint interface.Exploring the relationship between the frictional slip features and the acoustic emission characteristics under different bolt preloads can lay the foundation for using the acoustic emission techniques to monitor the pretightening state of bolted joints.This paper experimentally investigates the acoustic emission signals of a bolted joint structure during friction under different preloads,three repeated tests are implemented.The relationship between friction behavior and acoustic emission characteristics under different preloads is studied.The evolution of classical acoustic emission parameters and kinematic parameters with bolt preload levels is also analyzed.The 3‐D topography of the specimens after parametric tests is analyzed.The results show that the characteristics of both burst‐type and continuous‐type acoustic emission can reflect different friction behavior under different bolt preloads.The evolution curves of acoustic emission parameters changed under the interaction of both frictional kinematic parameters and bolt preload levels.For the 3‐D surface topography,the reciprocating friction shears the peaks and fills the surface valleys,and the topography of the scratched surface areas is redistributed.展开更多
基金the financial support from the National Natural Science Foundation of China(Nos.52205082 and 52075018)the Science Center for Gas Turbine Project(P2021-A-I-002-002).
文摘Bolted joints play a more and more important role in the structure with lighter weight and heavier load.This paper aims to provide an overview of different experimental approaches for the dynamic behavior of structures in the presence of bolted joints,especially the energy dissipation or damping at frictional interfaces.The comprehension of energy dissipation mechanisms due to friction is provided first,while the key parameters and the measurement techniques,such as the excitation force,the preload of the bolt,or the pressure at the interfaces,are briefly introduced.Secondly,the round-robin systems aim to measure the hysteresis parameters of the frictional joints under tangential loads are reviewed,summarizing the basic theory and the strategies to apply the excitation force or acquire the response in different testing systems.Followed by parameter identification strategies for bolted structures,the test rigs with one or more simplified bolted joints are summarized to give an insight into the understanding of typical characteristics of bolted structures,which are affected by the presence of friction.More complex test rigs hosting real-like or actual engineering structures with bolted lap or flange joints are also introduced to show the identification process of the dynamic characteristics of bolted connections employed in specific applications.Based on the review paper,researchers can get the basic knowledge about the experimental systems of the bolted structures,especially several classical round robin systems,such as the Gaul resonator and widely used Brake-Reußbeam system.Readers can take advantage of this background for more creative and effective future studies,make more progress on the study of assembled structures and understand the influence of bolting frictional connections on the dynamic response better.
基金Project(51078077)supported by the National Natural Science Foundation of China
文摘To study the seismic performance and load-transferring mechanism of an innovative precast shear wall(IPSW) involving vertical joints, an experimental investigation and theoretical analysis were successively conducted on two test walls. The test results confirm the feasibility of the novel joints as well as the favorable seismic performance of the walls, even though certain optimization measures should be taken to improve the ductility. The load-transferring mechanism subsequently is theoretically investigated based on the experimental study. The theoretical results show the load-transferring route of the novel joints is concise and definite. During the elastic stage, the vertical shear stress in the connecting steel frame(CSF) distributes uniformly; and each high-strength bolt(HSB)primarily delivers vertical shear force. However, the stress in the CSF redistributes when the walls develop into the elastic-plastic stage. At the ultimate state, the vertical shear stress and horizontal normal stress in the CSF distribute linearly; and the HSBs at both ends of the CSF transfer the maximum shear forces.
基金Supported by the National Natural Science Foundation of China(50674063, 50534080) the Special Expense of"Taishan Scholar" Conslxuction in Shandong Province.
文摘By means of numerical simulation, the roadway deformation affected by joints was analyzed and the pre-tensioned bolts for reinforcing roadway roof in jointed rock mass was studied. The results show that the roadway roof deformation increases gradually with the accretion of joint length, the increase of joint number, the de- crease of intervals, angles and friction angles of joints. The increase is obvious at beginning and then tends slowly. After pre-tensioned bolts are used, roadway roof deformations reduce obviously, and the supporting action of pre-tensioned bolts is more remarkable with accretion of joint length, increasing of joint number, reducing of joint interval, decreasing of joints angle and joint friction angle, and increasing of joint number that bolts drilling through. With comparison of different cases, the joints supporting effect is more remarkable at a small angel. It indicates that the supporting mechanism of pre-tensioned bolts is to reinforce weak faces, such as joints. The more joints the roof includes, the more visible the pre-tensioned bolts strengthening effect is.
基金National Natural Science Foundations of China,Grant/Award Numbers:12072268,12202264。
文摘A bolted joint may be in a state of continuous fretting friction and wear under random oscillatory loading,which makes the bolted joint prone to loosening.Therefore,it is essential to find a way to monitor the contact state of a bolted joint on time and handle it adeptly.Acoustic emission(AE)signals will be generated during the reciprocating friction of the bolted joint interface.Exploring the relationship between the frictional slip features and the acoustic emission characteristics under different bolt preloads can lay the foundation for using the acoustic emission techniques to monitor the pretightening state of bolted joints.This paper experimentally investigates the acoustic emission signals of a bolted joint structure during friction under different preloads,three repeated tests are implemented.The relationship between friction behavior and acoustic emission characteristics under different preloads is studied.The evolution of classical acoustic emission parameters and kinematic parameters with bolt preload levels is also analyzed.The 3‐D topography of the specimens after parametric tests is analyzed.The results show that the characteristics of both burst‐type and continuous‐type acoustic emission can reflect different friction behavior under different bolt preloads.The evolution curves of acoustic emission parameters changed under the interaction of both frictional kinematic parameters and bolt preload levels.For the 3‐D surface topography,the reciprocating friction shears the peaks and fills the surface valleys,and the topography of the scratched surface areas is redistributed.