期刊文献+
共找到97,220篇文章
< 1 2 250 >
每页显示 20 50 100
SolarDesign:An online photovoltaic device simulation and design platform
1
作者 Wei E.I.Sha Xiaoyu Wang +8 位作者 Wenchao Chen Yuhao Fu Lijun Zhang Liang Tian Minshen Lin Shudi Jiao Ting Xu Tiange Sun Dongxue Liu 《Chinese Physics B》 2025年第1期135-141,共7页
Solar Design(https://solardesign.cn/)is an online photovoltaic device simulation and design platform that provides engineering modeling analysis for crystalline silicon solar cells,as well as emerging high-efficiency ... Solar Design(https://solardesign.cn/)is an online photovoltaic device simulation and design platform that provides engineering modeling analysis for crystalline silicon solar cells,as well as emerging high-efficiency solar cells such as organic,perovskite,and tandem cells.The platform offers user-updatable libraries of basic photovoltaic materials and devices,device-level multi-physics simulations involving optical–electrical–thermal interactions,and circuit-level compact model simulations based on detailed balance theory.Employing internationally advanced numerical methods,the platform accurately,rapidly,and efficiently solves optical absorption,electrical transport,and compact circuit models.It achieves multi-level photovoltaic simulation technology from“materials to devices to circuits”with fully independent intellectual property rights.Compared to commercial softwares,the platform achieves high accuracy and improves speed by more than an order of magnitude.Additionally,it can simulate unique electrical transport processes in emerging solar cells,such as quantum tunneling,exciton dissociation,and ion migration. 展开更多
关键词 photovoltaic device simulation silicon solar cells organic and perovskite solar cells multi-physics and circuit simulation
下载PDF
A Fully‑Printed Wearable Bandage‑Based Electrochemical Sensor with pH Correction for Wound Infection Monitoring
2
作者 Kanyawee Kaewpradub Kornautchaya Veenuttranon +2 位作者 Husanai Jantapaso Pimonsri Mittraparp‑arthorn Itthipon Jeerapan 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期355-375,共21页
Wearable sensing systems have been designed to monitor health conditions in real-time by detecting analytes in human biofluids.Wound diagnosis remains challenging,necessitating suitable materials for high-performance ... Wearable sensing systems have been designed to monitor health conditions in real-time by detecting analytes in human biofluids.Wound diagnosis remains challenging,necessitating suitable materials for high-performance wearable sensors to offer prompt feedback.Existing devices have limitations in measuring pH and the concentration of pH-dependent electroactive species simultaneously,which is crucial for obtaining a comprehensive understanding of wound status and optimizing biosensors.Therefore,improving materials and analysis system accuracy is essential.This article introduces the first example of a flexible array capable of detecting pyocyanin,a bacterial virulence factor,while correcting dynamic pH fluctuations.We demonstrate that this combined sensor enhances accuracy by mitigating the impact of pH variability on pyocyanin sensor response.Customized screen-printable inks were developed to enhance analytical performance.The analytical performances of two sensitive sensor systems(i.e.,fully-printed porous graphene/multiwalled carbon nanotube(CNT)and polyaniline/CNT composites for pyocyanin and pH sensors)are evaluated.Partial least square regression is employed to analyze nonzero-order data arrays from square wave voltammetric and potentiometric measurements of pyocyanin and pH sensors to establish a predictive model for pyocyanin concentration in complex fluids.This sensitive and effective strategy shows potential for personalized applications due to its affordability,ease of use,and ability to adjust for dynamic pH changes. 展开更多
关键词 PYOCYaNIN BaNDaGES Wound monitoring Biosensor Wearable device
下载PDF
An Environment‑Tolerant Ion‑Conducting Double‑Network Composite Hydrogel for High‑Performance Flexible Electronic Devices 被引量:4
3
作者 Wenchao Zhao Haifeng Zhou +3 位作者 Wenkang Li Manlin Chen Min Zhou Long Zhao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期352-369,共18页
High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use i... High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use in soft electronics.To resolve these issues,a method involving freeze–thawing and ionizing radiation technology is reported herein for synthesizing a novel double-network(DN)ICH based on a poly(ionic liquid)/MXene/poly(vinyl alcohol)(PMP DN ICH)system.The well-designed ICH exhibits outstanding ionic conductivity(63.89 mS cm^(-1) at 25℃),excellent temperature resistance(-60–80℃),prolonged stability(30 d at ambient temperature),high oxidation resist-ance,remarkable antibacterial activity,decent mechanical performance,and adhesion.Additionally,the ICH performs effectively in a flexible wireless strain sensor,thermal sensor,all-solid-state supercapacitor,and single-electrode triboelectric nanogenerator,thereby highlighting its viability in constructing soft electronic devices.The highly integrated gel structure endows these flexible electronic devices with stable,reliable signal output performance.In particular,the all-solid-state supercapacitor containing the PMP DN ICH electrolyte exhibits a high areal specific capacitance of 253.38 mF cm^(-2)(current density,1 mA cm^(-2))and excellent environmental adaptability.This study paves the way for the design and fabrication of high-performance mul-tifunctional/flexible ICHs for wearable sensing,energy-storage,and energy-harvesting applications. 展开更多
关键词 Ionic liquids Double-network hydrogels Temperature tolerance Multifunctionality Flexible electronic devices
下载PDF
Recent Advances in Artificial Sensory Neurons:Biological Fundamentals,Devices,Applications,and Challenges
4
作者 Shuai Zhong Lirou Su +4 位作者 Mingkun Xu Desmond Loke Bin Yu Yishu Zhang Rong Zhao 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期168-216,共49页
Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantage... Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantages,convertingthe external analog signals to spikes is an essential prerequisite.Conventionalapproaches including analog-to-digital converters or ring oscillators,and sensorssuffer from high power and area costs.Recent efforts are devoted to constructingartificial sensory neurons based on emerging devices inspired by the biologicalsensory system.They can simultaneously perform sensing and spike conversion,overcoming the deficiencies of traditional sensory systems.This review summarizesand benchmarks the recent progress of artificial sensory neurons.It starts with thepresentation of various mechanisms of biological signal transduction,followed bythe systematic introduction of the emerging devices employed for artificial sensoryneurons.Furthermore,the implementations with different perceptual capabilitiesare briefly outlined and the key metrics and potential applications are also provided.Finally,we highlight the challenges and perspectives for the future development of artificial sensory neurons. 展开更多
关键词 artificial intelligence Emerging devices artificial sensory neurons Spiking neural networks Neuromorphic sensing
下载PDF
Recent developments in selective laser processes for wearable devices 被引量:2
5
作者 Youngchan Kim Eunseung Hwang +3 位作者 Chang Kai Kaichen Xu Heng Pan Sukjoon Hong 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第4期517-547,共31页
Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to d... Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to develop original solutions to such challenging technological problems due to their remote,sterile,rapid,and site-selective processing of materials.In this review,recent developments in relevant laser processes are summarized under two separate categories.First,transformative approaches,such as for laser-induced graphene,are introduced.In addition to design optimization and the alteration of a native substrate,the latest advances under a transformative approach now enable more complex material compositions and multilayer device configurations through the simultaneous transformation of heterogeneous precursors,or the sequential addition of functional layers coupled with other electronic elements.In addition,the more conventional laser techniques,such as ablation,sintering,and synthesis,can still be used to enhance the functionality of an entire system through the expansion of applicable materials and the adoption of new mechanisms.Later,various wearable device components developed through the corresponding laser processes are discussed,with an emphasis on chemical/physical sensors and energy devices.In addition,special attention is given to applications that use multiple laser sources or processes,which lay the foundation for the all-laser fabrication of wearable devices. 展开更多
关键词 Selective laser process Wearable device Transformative approach Laser-induced graphene ablation SINTERING Synthesis
下载PDF
Process,Material,and Regulatory Considerations for 3D Printed Medical Devices and Tissue Constructs 被引量:1
6
作者 Wei Long Ng Jia An Chee Kai Chua 《Engineering》 SCIE EI CAS CSCD 2024年第5期146-166,共21页
Three-dimensional(3D)printing is a highly automated platform that facilitates material deposition in a layer-by-layer approach to fabricate pre-defined 3D complex structures on demand.It is a highly promising techniqu... Three-dimensional(3D)printing is a highly automated platform that facilitates material deposition in a layer-by-layer approach to fabricate pre-defined 3D complex structures on demand.It is a highly promising technique for the fabrication of personalized medical devices or even patient-specific tissue constructs.Each type of 3D printing technique has its unique advantages and limitations,and the selection of a suitable 3D printing technique is highly dependent on its intended application.In this review paper,we present and highlight some of the critical processes(printing parameters,build orientation,build location,and support structures),material(batch-to-batch consistency,recycling,protein adsorption,biocompatibility,and degradation properties),and regulatory considerations(sterility and mechanical properties)for 3D printing of personalized medical devices.The goal of this review paper is to provide the readers with a good understanding of the various key considerations(process,material,and regulatory)in 3D printing,which are critical for the fabrication of improved patient-specific 3D printed medical devices and tissue constructs. 展开更多
关键词 3D printing BIOPRINTING BIOFaBRICaTION Medical devices Tissue constructs
下载PDF
A mixed-coordination electron trapping-enabled high-precision touch-sensitive screen for wearable devices 被引量:1
7
作者 Xi Zhang Junchi Ma +5 位作者 Hualin Deng Jinming Zhong Kaichen Xu Qiang Wu Bo Wen Dongfeng Diao 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第4期413-427,共15页
Touch-sensitive screens are crucial components of wearable devices.Materials such as reduced graphene oxide(rGO),carbon nanotubes(CNTs),and graphene offer promising solutions for flexible touch-sensitive screens.Howev... Touch-sensitive screens are crucial components of wearable devices.Materials such as reduced graphene oxide(rGO),carbon nanotubes(CNTs),and graphene offer promising solutions for flexible touch-sensitive screens.However,when stacked with flexible substrates to form multilayered capacitive touching sensors,these materials often suffer from substrate delamination in response to deformation;this is due to the materials having different Young’s modulus values.Delamination results in failure to offer accurate touch screen recognition.In this work,we demonstrate an induced charge-based mutual capacitive touching sensor capable of high-precision touch sensing.This is enabled by electron trapping and polarization effects related to mixed-coordinated bonding between copper nanoparticles and vertically grown graphene nanosheets.Here,we used an electron cyclotron resonance system to directly fabricate graphene-metal nanofilms(GMNFs)using carbon and copper,which are firmly adhered to flexible substrates.After being subjected to 3000 bending actions,we observed almost no change in touch sensitivity.The screen interaction system,which has a signal-to-noise ratio of 41.16 dB and resolution of 650 dpi,was tested using a handwritten Chinese character recognition trial and achieved an accuracy of 94.82%.Taken together,these results show the promise of touch-sensitive screens that use directly fabricated GMNFs for wearable devices. 展开更多
关键词 Flexible touch-sensitive screen Graphene-metal nanofilms Mixed coordination Wearable device
下载PDF
A Review on Integration of IoT as an Approach for Energy Saving in Smart Sustainable Cities
8
作者 Mohd Addad Shehadeh Al-Taani 《Journal of Environmental Science and Engineering(A)》 CAS 2025年第1期60-71,共12页
Rapid urbanization has been happening around the world,leading to many challenges and difficulties in infrastructure,communication network,transportation,environmental and organizational problems.Proper and responsibl... Rapid urbanization has been happening around the world,leading to many challenges and difficulties in infrastructure,communication network,transportation,environmental and organizational problems.Proper and responsible management of urban resources plays a significant role in sustainable development.Smart sustainable cities use ICTs(Information and Communication Technologies)to improve quality of life,efficiency of urban operation and services.The latest advancement in communication,technology,data management,and IoT(Internet of Things)provide a tremendous role for practical implementations and adoption of devices and entities.Smart sustainable cities can be intellectualized as an innovative approach of controlling urban resources and valuable components based on the latest advancement in ICT.Our study focuses on reviewing and discussing the literature that states the vital components of IoT associated with smart sustainable cities in general and specifically with green energy. 展开更多
关键词 IOT devices and sensors smart sustainable cities and green energy.
下载PDF
Recent progress on elemental tellurium and its devices
9
作者 Jiachi Liao Zhengxun Lai +1 位作者 You Meng Johnny C.Ho 《Journal of Semiconductors》 2025年第1期91-106,共16页
The rapid advancement of information technology has heightened interest in complementary devices and circuits.Conventional p-type semiconductors often lack sufficient electrical performance,thus prompting the search f... The rapid advancement of information technology has heightened interest in complementary devices and circuits.Conventional p-type semiconductors often lack sufficient electrical performance,thus prompting the search for new materials with high hole mobility and long-term stability.Elemental tellurium(Te),featuring a one-dimensional chiral atomic structure,has emerged as a promising candidate due to its narrow bandgap,high hole mobility,and versatility in industrial applications,particularly in electronics and renewable energy.This review highlights recent progress in Te nanostructures and related devices,focusing on synthesis methods,including vapor deposition and hydrothermal synthesis,which produce Te nanowires,nanorods,and other nanostructures.Critical applications in photodetectors,gas sensors,and energy harvesting devices are discussed,with a special emphasis on their role within the internet of things(IoT)framework,a rapidly growing field that is reshaping our technological landscape.The prospects and potential applications of Te-based technologies are also highlighted. 展开更多
关键词 elemental tellurium PHOTODETECTOR field-effect transistor gas sensor energy harvesting device
下载PDF
Experimental investigation on high heat flux plasma parameters of HIT-PSI device in argon discharges
10
作者 Tao HUANG Qiuyue NIE +7 位作者 Cheng CHEN Lin NIE Wei ZHAO Tao JIANG Yang LIU Xu ZHAO Feng LI Xiaogang WANG 《Plasma Science and Technology》 2025年第1期118-127,共10页
Researches on plasma-facing materials/components(PFMs/PFCs)have become a focus in magnetic confinement fusion studies,particularly for advanced tokamak operation scenarios.Similarly,spacecraft surface materials must m... Researches on plasma-facing materials/components(PFMs/PFCs)have become a focus in magnetic confinement fusion studies,particularly for advanced tokamak operation scenarios.Similarly,spacecraft surface materials must maintain stable performance under relatively high temperatures and other harsh plasma conditions,making studies of their thermal and ablation resistance critical.Recently,a low-cost,low-energy-storage for superconducting magnets,and compact linear device,HIT-PSI,has been designed and constructed at Harbin Institute of Technology(HIT)to investigate the interaction between stable high heat flux plasma and PFMs/PFCs in scrape-off-layer(SOL)and divertor regions,as well as spacecraft surface materials.The parameters of the argon plasma beam of HIT-PSI are diagnosed using a water-cooled planar Langmuir probe and emission spectroscopy.As magnetic field rises to 2 T,the argon plasma beam generated by a cascaded arc source achieves high density exceeding 1.2×10^(21)m^(-3)at a distance of 25 cm from the source with electron temperature surpassing 4 eV,where the particle flux reaches 10^(24)m^(-2)s^(-1),and the heat flux loaded on the graphite target measured by infrared camera reaches 4 MW/m^(2).Combined with probe and emission spectroscopy data,the transport characteristics of the argon plasma beam are analyzed. 展开更多
关键词 linear plasma device plasma-material interaction high heat flux high particle flux
下载PDF
Numerical studies for plasmas of a linear plasma device HIT-PSI with geometry modified SOLPS-ITER
11
作者 王敏 聂秋月 +2 位作者 黄韬 王晓钢 张彦杰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期503-508,共6页
The HIT-PSI is a linear plasma device built for physically simulating the high heat flux environment of future reactor divertors to test/develop advanced target plate materials.In this study,the geometry-modified SOLP... The HIT-PSI is a linear plasma device built for physically simulating the high heat flux environment of future reactor divertors to test/develop advanced target plate materials.In this study,the geometry-modified SOLPS-ITER program is employed to examine the effects of the magnetic field strength and neutral pressure in the device on the heat flux experienced by the target plate of the HIT-PSI device.The findings of the numerical simulation indicate a positive correlation between the magnetic field strength and the heat flux density.Conversely,there is a negative correlation observed between the heat flux density and the neutral pressure.When the magnetic field strength at the axis exceeds 1 tesla and the neutral pressure falls below 10 Pa,the HIT-PSI has the capability to attain a heat flux of 10 MW·m-2 at the target plate.The simulation results offer a valuable point of reference for subsequent experiments at HIT-PSI. 展开更多
关键词 HIT-PSI heat flux linear plasma SOLPS-ITER device
下载PDF
Light-based 3D printing of stimulus-responsive hydrogels forminiature devices:recent progress and perspective
12
作者 Chen Xin Neng Xia Li Zhang 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第5期721-746,共26页
Miniature devices comprising stimulus-responsive hydrogels with high environmental adaptability are now considered competitive candidates in the fields of biomedicine,precise sensors,and tunable optics.Reliable and ad... Miniature devices comprising stimulus-responsive hydrogels with high environmental adaptability are now considered competitive candidates in the fields of biomedicine,precise sensors,and tunable optics.Reliable and advanced fabricationmethods are critical formaximizing the application capabilities ofminiature devices.Light-based three-dimensional(3D)printing technology offers the advantages of a wide range of applicable materials,high processing accuracy,and strong 3D fabrication capability,which is suitable for the development of miniature devices with various functions.This paper summarizes and highlights the recent advances in light-based 3D-printed miniaturized devices,with a focus on the latest breakthroughs in lightbased fabrication technologies,smart stimulus-responsive hydrogels,and tunable miniature devices for the fields of miniature cargo manipulation,targeted drug and cell delivery,active scaffolds,environmental sensing,and optical imaging.Finally,the challenges in the transition of tunable miniaturized devices from the laboratory to practical engineering applications are presented.Future opportunities that will promote the development of tunable microdevices are elaborated,contributing to their improved understanding of these miniature devices and further realizing their practical applications in various fields. 展开更多
关键词 3D printing Stimulus-responsive hydrogels Miniature devices Shape-morphing
下载PDF
Exploring innovative synthetic solutions for advanced polymer-based electrochromic energy storage devices:Phenoxazine as a promising chromophore
13
作者 Catalin-Paul Constantin Mihaela Balan-Porcarasu Gabriela Lisa 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期433-452,共20页
The current investigation offers an innovative synthetic solution regarding electrochromic(EC)and energy storage applications by exploring phenoxazine(POZ)moiety.Subsequently,three POZ-based polymers(polyimide,polyazo... The current investigation offers an innovative synthetic solution regarding electrochromic(EC)and energy storage applications by exploring phenoxazine(POZ)moiety.Subsequently,three POZ-based polymers(polyimide,polyazomethine,and polyamide)were synthesized to ascertain the superior performer.The polyamide exhibited remarkable attributes,including high redox stability during 500 repetitive CVs,optical contrast of 61.98%,rapid response times of 1.02 and 1.38 s for coloring and bleaching,EC efficiency of 280 cm^(2)C^(-1).and decays of the optical density and EC efficiency of only 12.18%and 6.23%after 1000 cycles.Then,the energy storage performance of polyamide PA was tested,for which the following parameters were obtained:74.7 F g^(-1)(CV,scan rate of 10 mV s^(-1))and 118 F g^(-1)(GCD,charging current of 0.1 A g^(-1)).Then,the polyamide was tested in EES devices,which yielded the following EC parameters:an optical contrast of 62.15%,response times of 9.24 and 5.01 s for coloring and bleaching,EC efficiency of 178 cm^(2)C^(-1),and moderate decays of 20.25%and 23.24%for the optical density and EC efficiency after 500 cycles.The energy storage performance included a capacitance of 106 F g^(-1)(CV,scan rate of 0.1 mV s^(-1))and 9.23 F g^(-1)(GCD,charging current of 0.1 A g^(-1)),capacitance decay of 11.9%after500 cycles,and 1.7 V retention after 2 h.Also,two EES devices connected in series powered a 3 V LED for almost 30 s. 展开更多
关键词 POLYMERS PHENOXaZINE Electrochromic Energy storage Electrochromi cenergy storage devices
下载PDF
Effects of synthetic site water on bentonite-concrete system for a potential nuclear waste repository
14
作者 Zhao Sun Yong-Gui Chen +3 位作者 Wei-Min Ye Qiong Wang Dong-Bei Wu Zhen-Yu Yin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3786-3797,共12页
In high-level nuclear waste(HLW)repositories,concrete and compacted bentonite are designed to be employed as buffer materials,which may raise a problem of interactions between concrete and bentonite.These interactions... In high-level nuclear waste(HLW)repositories,concrete and compacted bentonite are designed to be employed as buffer materials,which may raise a problem of interactions between concrete and bentonite.These interactions would lead to mineralogy transformation and buffer performance decay of bentonite under the near field environment conditions in a repository.A small-scale experimental setup was established to simulate the concrete-bentonite-site water interaction system from a potential nuclear waste repository in China.Three types of mortars were prepared to correspond to the concrete at different degradation states.The results permit the determination of the following:(1)The macroproperties of Gaomiaozi(GMZ)bentonite(e.g.swelling pressure,permeability,the final dry density,and water content of reacted samples);(2)The composition evolution of fluids from the synthetic site water-concrete-bentonite interaction systems;(3)The sample characterization including Fourier transform infrared spectroscopy(FTIR)and X-ray powder diffraction(XRD).Under the infiltration of the synthesis Beishan site water(BSW),the swelling pressure of bentonite decreases slowly with time after reaching its second swelling peak.The flux decreases with time during the infiltrations,and it tends to be stable after more than 120 d.Due to the cation exchange reactions in the BSW-concrete-bentonite systems,the divalent cations(Ca and Mg)were consumed,and the monovalent cations(Na and K)were released.The dissolution of minerals in the bentonite such as albite causes Si increasing in the pore water.It was concluded that the hydro-mechanical property degradation of bentonite takes place when it comes into contact with concrete mortar,even under low-pH groundwater conditions.The soil dispersion,the uneven water content,and the uneven dry density in bentonite samples may partly contribute to the swelling decay of bentonite.Therefore,the direct contact with concrete has an obvious effect on the performance of bentonite. 展开更多
关键词 Mock-up device GMZ bentonite Site water-concrete-bentonite system Geochemistry Buffer performance
下载PDF
Highly Elastic,Bioresorbable Polymeric Materials for Stretchable,Transient Electronic Systems
15
作者 Jeong‑Woong Shin Dong‑Je Kim +12 位作者 Tae‑Min Jang Won Bae Han Joong Hoon Lee Gwan‑Jin Ko Seung Min Yang Kaveti Rajaram Sungkeun Han Heeseok Kang Jun Hyeon Lim Chan‑Hwi Eom Amay J.Bandodkar Hanul Min Suk‑Won Hwang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期1-13,共13页
Substrates or encapsulants in soft and stretchable formats are key components for transient,bioresorbable electronic systems;however,elastomeric polymers with desired mechanical and biochemical properties are very lim... Substrates or encapsulants in soft and stretchable formats are key components for transient,bioresorbable electronic systems;however,elastomeric polymers with desired mechanical and biochemical properties are very limited compared to nontransient counterparts.Here,we introduce a bioresorbable elastomer,poly(glycolide-co-ε-caprolactone)(PGCL),that contains excellent material properties including high elongation-at-break(<1300%),resilience and toughness,and tunable dissolution behaviors.Exploitation of PGCLs as polymer matrices,in combination with conducing polymers,yields stretchable,conductive composites for degradable interconnects,sensors,and actuators,which can reliably function under external strains.Integration of device components with wireless modules demonstrates elastic,transient electronic suture system with on-demand drug delivery for rapid recovery of postsurgical wounds in soft,time-dynamic tissues. 展开更多
关键词 Biodegradable elastomer Conductive polymer composites Biomedical device Transient electronics
下载PDF
Wearable electronic device for X-ray warning and health monitoring
16
作者 Haijing Hu Wanting Pan +4 位作者 Yuhong He Chenglong Li Wei Qu Yifan Yang Haotong Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期193-200,共8页
The well-developed multifunctional wearable electronic device has fed the demand for human medicine and health monitoring in complex situations.However,the advancement of nuclear technology,especially irradiation medi... The well-developed multifunctional wearable electronic device has fed the demand for human medicine and health monitoring in complex situations.However,the advancement of nuclear technology,especially irradiation medicine and safety inspections,has increased the exposure risk of irradiation safety workers.Traditional irradiation detectors are stiff and incompatible with the skin,and lack human health monitoring function,thus it’s vital to apply these flexible sensors for irradiation warning.Here,we report a novel composite gel device synthesized through solution processes by combining the Cs_(3)Cu_(2)I_(5):Zn nanoscintillator with the pre-patterned biocompatible gel,exhibiting a bi-functional response to motion/vibration sensing and sensitive irradiation warning.These wearable devices achieve a pressure sensitivity of up to 34 kPa^(-1)in a low-pressure range (0–3 kPa),a low limit of detection (LoD) down to 1.4 Pa,enabling health monitoring functions of pulse monitoring,finger bending,and elbow bending.Simultaneously,the device scintillates under X-ray irradiation among a wide dose rate range of 54–1167μGy_(air)s^(-1).The robust device shows no obvious signal loss after 4000 compression cycles and also excellent irradiation resistance over 50 days,broadening the path for designing and realizing new functional wearable devices. 展开更多
关键词 Scintillator Ionic gel Bifunctional device Pressure sensing X-ray irradiation warning
下载PDF
BLS-identification:A device fingerprint classification mechanism based on broad learning for Internet of Things
17
作者 Yu Zhang Bei Gong Qian Wang 《Digital Communications and Networks》 SCIE CSCD 2024年第3期728-739,共12页
The popularity of the Internet of Things(IoT)has enabled a large number of vulnerable devices to connect to the Internet,bringing huge security risks.As a network-level security authentication method,device fingerprin... The popularity of the Internet of Things(IoT)has enabled a large number of vulnerable devices to connect to the Internet,bringing huge security risks.As a network-level security authentication method,device fingerprint based on machine learning has attracted considerable attention because it can detect vulnerable devices in complex and heterogeneous access phases.However,flexible and diversified IoT devices with limited resources increase dif-ficulty of the device fingerprint authentication method executed in IoT,because it needs to retrain the model network to deal with incremental features or types.To address this problem,a device fingerprinting mechanism based on a Broad Learning System(BLS)is proposed in this paper.The mechanism firstly characterizes IoT devices by traffic analysis based on the identifiable differences of the traffic data of IoT devices,and extracts feature parameters of the traffic packets.A hierarchical hybrid sampling method is designed at the preprocessing phase to improve the imbalanced data distribution and reconstruct the fingerprint dataset.The complexity of the dataset is reduced using Principal Component Analysis(PCA)and the device type is identified by training weights using BLS.The experimental results show that the proposed method can achieve state-of-the-art accuracy and spend less training time than other existing methods. 展开更多
关键词 device fingerprint Traffic analysis Class imbalance Broad learning system access authentication
下载PDF
An ethically guided preclinical device for phenotyping H_(2)production in laboratory rodents
18
作者 Victor Pascal-Moussellard Emilie Boucher +7 位作者 Stéphane Tanguy Philippe Cinquin Pierre-Alain Barraud ChloéDavin Cordélia Salomez-Ihl Dalil Hannani François Boucher Jean-Pierre Alcaraz 《Animal Models and Experimental Medicine》 CAS CSCD 2024年第4期553-561,共9页
Background:Dihydrogen(H_(2))is produced endogenously by the intestinal microbiota through the fermentation of diet carbohydrates.Over the past few years,numer-ous studies have demonstrated the significant therapeutic ... Background:Dihydrogen(H_(2))is produced endogenously by the intestinal microbiota through the fermentation of diet carbohydrates.Over the past few years,numer-ous studies have demonstrated the significant therapeutic potential of H_(2)in various pathophysiological contexts,making the characterization of its production in labora-tory species of major preclinical importance.Methods:This study proposes an innovative solution to accurately monitor H_(2)pro-duction in free-moving rodents while respecting animal welfare standards.The devel-oped device consisted of a wire rodent cage placed inside an airtight chamber in which the air quality was maintained,and the H_(2)concentration was continuously analyzed.After the airtightness and efficiency of the systems used to control and maintain air quality in the chamber were checked,tests were carried out on rats and mice with different metabolic phenotypes,over 12 min to 1-h experiments and repeatedly.H_(2)production rates(HPR)were obtained using an easy calculation algorithm based on a first-order moving average.Results:HPR in hyperphagic Zucker rats was found to be twice as high as in control Wistar rats,respectively,2.64 and 1.27 nmol.s^(−1)per animal.In addition,the ingestion of inulin,a dietary fiber,stimulated H_(2)production in mice.HPRs were 0.46 nmol.s^(−1)for animals under control diet and 1.99 nmol.s^(−1)for animals under inulin diet.Conclusions:The proposed device coupled with our algorithm enables fine analysis of the metabolic phenotype of laboratory rats or mice with regard to their endogenous H_(2)production. 展开更多
关键词 hydrogen therapy laboratory rodents MICROBIOTa molecular hydrogen noninvasive monitoring device
下载PDF
Development of an Integrated Disposable Device for SARSCoV-2 Nucleic Acid Extraction and Detection
19
作者 Jing Ma Yanzhe Hao +11 位作者 Meiling Hou Xiaoshan Zhang Jingduan Liu Haodi Meng Jiangbo Chang Xuejun Ma Jihua Liu Qingjie Ying Xianhua Wang Hongxia Li Yuxi Cao Xiaoguang Zhang 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第6期639-646,共8页
Objective To develop a highly sensitive and rapid nucleic acid detection method for the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Methods We designed,developed,and manufactured an integrated disposab... Objective To develop a highly sensitive and rapid nucleic acid detection method for the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Methods We designed,developed,and manufactured an integrated disposable device for SARS-CoV-2 nucleic acid extraction and detection.The precision of the liquid transfer and temperature control was tested.A comparison between our device and a commercial kit for SARS-Cov-2 nucleic acid extraction was performed using real-time fluorescence reverse transcription polymerase chain reaction(RT-PCR).The entire process,from SARS-CoV-2 nucleic acid extraction to amplification,was evaluated.Results The precision of the syringe transfer volume was 19.2±1.9μL(set value was 20),32.2±1.6(set value was 30),and 57.2±3.5(set value was 60).Temperature control in the amplification tube was measured at 60.0±0.0℃(set value was 60)and 95.1±0.2℃(set value was 95)respectively.SARS-Cov-2 nucleic acid extraction yield through the device was 7.10×10^(6) copies/mL,while a commercial kit yielded 2.98×10^(6) copies/mL.The mean time to complete the entire assay,from SARS-CoV-2 nucleic acid extraction to amplification detection,was 36 min and 45 s.The detection limit for SARS-CoV-2 nucleic acid was 250 copies/mL.Conclusion The integrated disposable devices may be used for SARS-CoV-2 Point-of-Care test(POCT). 展开更多
关键词 an integrated disposable device SaRS-Cov-2 Nucleic acid detection
下载PDF
Device design principles and bioelectronic applications for flexible organic electrochemical transistors
20
作者 Lin Gao Mengge Wu +1 位作者 Xinge Yu Junsheng Yu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期126-153,共28页
Organic electrochemical transistors(OECTs) exhibit significant potential for applications in healthcare and human-machine interfaces, due to their tunable synthesis, facile deposition, and excellent biocompatibility. ... Organic electrochemical transistors(OECTs) exhibit significant potential for applications in healthcare and human-machine interfaces, due to their tunable synthesis, facile deposition, and excellent biocompatibility. Expanding OECTs to the fexible devices will significantly facilitate stable contact with the skin and enable more possible bioelectronic applications. In this work,we summarize the device physics of fexible OECTs, aiming to offer a foundational understanding and guidelines for material selection and device architecture. Particular attention is paid to the advanced manufacturing approaches, including photolithography and printing techniques, which establish a robust foundation for the commercialization and large-scale fabrication. And abundantly demonstrated examples ranging from biosensors, artificial synapses/neurons, to bioinspired nervous systems are summarized to highlight the considerable prospects of smart healthcare. In the end, the challenges and opportunities are proposed for fexible OECTs. The purpose of this review is not only to elaborate on the basic design principles of fexible OECTs, but also to act as a roadmap for further exploration of wearable OECTs in advanced bio-applications. 展开更多
关键词 flexible organic electrochemical transistors wearable bioelectronics manufacturing approaches device physics neuromorphic applications
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部