A new vision-based long-distance lane perception and front vehicle location method was developed for decision making of full autonomous vehicles on highway roads,Firstly,a real-time long-distance lane detection approa...A new vision-based long-distance lane perception and front vehicle location method was developed for decision making of full autonomous vehicles on highway roads,Firstly,a real-time long-distance lane detection approach was presented based on a linear-cubic road model for two-lane highways.By using a novel robust lane marking feature which combines the constraints of intensity,edge and width,the lane markings in far regions were extracted accurately and efficiently.Next,the detected lane lines were selected and tracked by estimating the lateral offset and heading angle of ego vehicle with a Kalman filter,Finally,front vehicles were located on correct lanes using the tracked lane lines,Experiment results show that the proposed lane perception approach can achieve an average correct detection rate of 94.37% with an average false positive detection rate of 0.35%,The proposed approaches for long-distance lane perception and front vehicle location were validated in a 286 km full autonomous drive experiment under real traffic conditions.This successful experiment shows that the approaches are effective and robust enough for full autonomous vehicles on highway roads.展开更多
Intelligent vehicle needs the turn light information of front vehicles to make decisions in autonomous navigation. A recognition algorithm was designed to get information of turn light. Approximated center segmentatio...Intelligent vehicle needs the turn light information of front vehicles to make decisions in autonomous navigation. A recognition algorithm was designed to get information of turn light. Approximated center segmentation method was designed to divide the front vehicle image into two parts by using geometry information. The number of remained pixels of vehicle image which was filtered by the morphologic feaatres was got by adaptive threshold method, and it was applied to recognizing the lights flashing. The experimental results show that the algorithm can not only distinguish the two turn lights of vehicle but also recognize the information of them. The algorithm is quiet effective, robust and satisfactory in real-time performance.展开更多
基金Project(90820302) supported by the National Natural Science Foundation of China
文摘A new vision-based long-distance lane perception and front vehicle location method was developed for decision making of full autonomous vehicles on highway roads,Firstly,a real-time long-distance lane detection approach was presented based on a linear-cubic road model for two-lane highways.By using a novel robust lane marking feature which combines the constraints of intensity,edge and width,the lane markings in far regions were extracted accurately and efficiently.Next,the detected lane lines were selected and tracked by estimating the lateral offset and heading angle of ego vehicle with a Kalman filter,Finally,front vehicles were located on correct lanes using the tracked lane lines,Experiment results show that the proposed lane perception approach can achieve an average correct detection rate of 94.37% with an average false positive detection rate of 0.35%,The proposed approaches for long-distance lane perception and front vehicle location were validated in a 286 km full autonomous drive experiment under real traffic conditions.This successful experiment shows that the approaches are effective and robust enough for full autonomous vehicles on highway roads.
基金Projects(90820302,60805027)supported by the National Natural Science Foundation of ChinaProject(200805330005)supported by the PhD Programs Foundation of Ministry of Education of ChinaProject(20010FJ4030)supported by the Academician Foundation of Hunan Province,China
文摘Intelligent vehicle needs the turn light information of front vehicles to make decisions in autonomous navigation. A recognition algorithm was designed to get information of turn light. Approximated center segmentation method was designed to divide the front vehicle image into two parts by using geometry information. The number of remained pixels of vehicle image which was filtered by the morphologic feaatres was got by adaptive threshold method, and it was applied to recognizing the lights flashing. The experimental results show that the algorithm can not only distinguish the two turn lights of vehicle but also recognize the information of them. The algorithm is quiet effective, robust and satisfactory in real-time performance.