期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Energy Paths that Sustain the Warm-Sector Torrential Rainfall over South China and Their Contrasts to the Frontal Rainfall: A Case Study 被引量:2
1
作者 Shenming FU Jingping ZHANG +2 位作者 Yali LUO Wenying YANG Jianhua SUN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第9期1519-1535,共17页
Predicting warm-sector torrential rainfall over South China,which is famous for its destructive power,is one of the most challenging issues of the current numerical forecast field.Insufficient understanding of the key... Predicting warm-sector torrential rainfall over South China,which is famous for its destructive power,is one of the most challenging issues of the current numerical forecast field.Insufficient understanding of the key mechanisms underlying this type of event is the root cause.Since understanding the energetics is crucial to understanding the evolutions of various types of weather systems,a general methodology for investigating energetics of torrential rainfall is provided in this study.By applying this methodology to a persistent torrential rainfall event which had concurrent frontal and warm-sector precipitation,the first physical image on the energetics of the warm-sector torrential rainfall is established.This clarifies the energy sources for producing the warm-sector rainfall during this event.For the first time,fundamental similarities and differences between the warm-sector and frontal torrential rainfall are shown in terms of energetics.It is found that these two types of rainfall mainly differed from each other in the lower-tropospheric dynamical features,and their key differences lay in energy sources.Scale interactions(mainly through downscale energy cascade and transport)were a dominant factor for the warm-sector torrential rainfall during this event,whereas,for the frontal torrential rainfall,they were only of secondary importance.Three typical signals in the background environment are found to have supplied energy to the warm-sector torrential rainfall,with the quasi-biweekly oscillation having contributed the most. 展开更多
关键词 torrential rainfall warm-sector rainfall frontal rainfall South China scale interactions baroclinic energy conversion
下载PDF
Comparison of Microphysical Characteristics of Warm-sector,Frontal and Shear-line Heavy Rainfall During the Pre-summer Rainy Season in South China
2
作者 夏丰 刘显通 +6 位作者 胡胜 黎慧琦 饶晓娜 林青 肖辉 冯璐 赖睿泽 《Journal of Tropical Meteorology》 SCIE 2023年第2期204-215,共12页
Warm-sector heavy rainfall(WR),shear-line heavy rainfall(SR),and frontal heavy rainfall(FR)are three types of rainfall that frequently occur during the pre-summer rainy season in south China.In this research,we invest... Warm-sector heavy rainfall(WR),shear-line heavy rainfall(SR),and frontal heavy rainfall(FR)are three types of rainfall that frequently occur during the pre-summer rainy season in south China.In this research,we investigated the differences in microphysical characteristics of heavy rainfall events during the period of 10-15 May 2022 based on the combined observations from 11 S-band polarimetric radars in south China.The conclusions are as follows:(1)WR has the highest radar echo top height,the strongest radar echo at all altitudes,the highest lightning density,and the most active ice-phase process,which suggests that the convection is the most vigorous in the WR,moderate in the FR,and the weakest in the SR.(2)Three types of rainfall are all marine-type precipitation,the massweighted mean diameter(Dm,mm)and the intercept parameter(Nw,mm^(-1) m^(-3))of the raindrops in the WR are the largest.(3)The WR possesses the highest proportion of graupel compared with the FR and SR,and stronger updrafts and more abundant water vapor supply may lead to larger raindrops during the melting and collision-coalescence processes.(4)Over all the heights,liquid and ice water content in the WR are higher than those in the SR and FR,the ratio of ice to liquid water content in the WR is as high as 27%when ZH exceeds 50 dBZ,definitely higher than that in the SR and FR,indicating that the active ice-phase process existing in the WR is conducive to the formation of heavy rainfall. 展开更多
关键词 microphysical characteristic S-band polarimetric radar warm-sector heavy rainfall frontal heavy rainfall shear-line heavy rainfall
下载PDF
Comparison of Microphysical Characteristics Between Warm-sector and Frontal Heavy Rainfall in the South of China
3
作者 冯璐 胡胜 +5 位作者 刘显通 黎慧琦 肖辉 李晓惠 赖瑞泽 林青 《Journal of Tropical Meteorology》 SCIE 2023年第1期87-100,共14页
During the April-June raining season,warm-sector heavy rainfall(WR) and frontal heavy rainfall(FR) often occur in the south of China,causing natural disasters.In this study,the microphysical characteristics of WR and ... During the April-June raining season,warm-sector heavy rainfall(WR) and frontal heavy rainfall(FR) often occur in the south of China,causing natural disasters.In this study,the microphysical characteristics of WR and FR events from 2016 to 2022 are analyzed by using 2-dimensional video disdrometer(2DVD) data in the south of China.The microphysical characteristics of WR and FR events are quite different.Compared with FR events,WR events have higher concentration of D<5.3 mm(especially D <1 mm),leading to higher rain rates.The mean values of Dmand lgNwof WR events are higher than that of FR events.The microphysical characteristics in different rain rate classes(C1:R~5-20 mm h-1,C2:R~20-50 mm h-1,C3:R~50-100 mm h^(-1),and C4:R> 100 mm h^(-1)) for WR and FR events are also different.Raindrops from C3 contribute the most to the precipitation of WR events,and raindrops from C2 contribute the most to the precipitation of FR events.For C2 and C3,compared with FR events,WR events have higher concentration of D <1 mm and D~3-4.5 mm.Moreover,the shape and slope(μ-A) relationships and the radar reflectivity and rain rate(Z-R) relationships of WR and FR events are quite different in each rain rate class.The investigation of the difference in microphysical characteristics between WR and FR events provide useful information for radar-based quantitative precipitation estimation and numerical prediction. 展开更多
关键词 warm-sector heavy rainfall frontal heavy rainfall raindrop size distribution(DSD) 2-dimensional video disdrometer(2DVD) the south of China
下载PDF
Spatial Propagation of Different Scale Errors in Meiyu Frontal Rainfall Systems
4
作者 杨舒楠 谈哲敏 《Acta meteorologica Sinica》 SCIE 2012年第2期129-146,共18页
The spatial propagation of meso-and small-scale errors in a Meiyu frontal heavy rainfall event,which occurred in eastern China during 4-6 July 2003,is investigated by using the mesoscale numerical model MM5.In general... The spatial propagation of meso-and small-scale errors in a Meiyu frontal heavy rainfall event,which occurred in eastern China during 4-6 July 2003,is investigated by using the mesoscale numerical model MM5.In general,the spatial propagation of simulated errors depends on their horizontal scales.Small-scale(L 〈 100 km) initial error may spread rapidly as an isotropic circle through the sound wave.Then,many scattered convection-scale errors are triggered in moist convection zone that will spread abroad through the isotropic,round-shaped sound wave further more.Corresponding to the evolution of the rainfall system,several new convection-scale errors may be generated continuously by moist convection within the propagated round-shaped errors.Through the above circular process,the small-scale error increases in amplitude and grows in scale rapidly.Mesoscale(100 km 〈 L 〈 1000 km) initial error propagates up-and down-stream wavelike through the gravity wave,meanwhile migrating down-stream slowly along with the rainfall system by the mean flow.The up-stream propagation of the mesoscale error is very important to the error growth because it can accumulate error energy locally at a place where there is no moist convection and far upstream from the initial perturbation source.Although moist convection plays an important role in the rapid growth of errors,it has no impact on the propagation of meso-and small-scale errors.The diabatic heating could trigger,strengthen,and promote upscaling of small-scale errors successively,and provide "error source" to error growth and propagation.The rapid growth of simulated errors results from both intense moist convection and appropriate spatial propagation of the errors. 展开更多
关键词 initial error spatial propagation upscale growth moist convection Meiyu frontal rainfall
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部