Ocean fronts play important roles in nutrient transport and in the shaping ecological patterns.Frontal zones in small bays are typically small in scale,have a complex structure,and they are spatially and temporally va...Ocean fronts play important roles in nutrient transport and in the shaping ecological patterns.Frontal zones in small bays are typically small in scale,have a complex structure,and they are spatially and temporally variable,but there are limited data on how biological communities respond to this variation.Hangzhou Bay,a mediumsized estuary in China,is an ideal place in which to study the response of plankton to small-scale ocean fronts,because three water masses(Qiantang River Diluted Water,Changjiang River Diluted Water,and the East China Sea current) converge here and form dynamic salinity fronts throughout the year.We investigate zooplankton communities,and temperature,salinity and chlorophyll a(Chl a) in Hangzhou Bay in June(wet perio d) and December(dry period) of 2022 and examine the dominant environmental factors that affect zooplankton community spatial variability.We then match the spatial distributions of zooplankton communities with those of salinity fronts.S alinity is the most important explanatory variable to affect zooplankton community spatial variability during both wet and dry periods,in that it contributes>60% of the variability in community structure.Furthermore,the spatial distributions of zooplankton match well with salinity fronts.During December,with weaker Qiantang River Diluted Water and a stronger secondary Changjiang River Plume,zooplankton communities occur in moderate salinity(MS,salinity range 15.6±2.2) and high salinity(HS,22.4±1.7) regions,and their ecological boundaries closely match the Qiantang River Diluted Water front.In June,different zooplankton communities occur in low salinity(LS,3.9±1.0),MS(11.7±3.6) and HS(21.3±1.9) regions.Although the LS region occurs abnormally in the central bay rather than its apex because of the anomalous influence of rising and falling tides during the sampling perio d,the ecological boundaries still match salinity interfaces.Low-salinity or brackish-water zooplankter taxa are relatively more abundant in LS or MS regions,and the biomass and abundance of zooplankton is higher in the MS region.展开更多
The marine hydrological process is still unclear due to scarce observations.Based on stable water isotopes in surface seawater along the 33rd Chinese National Antarctic Science Expedition from November 2016 to April 2...The marine hydrological process is still unclear due to scarce observations.Based on stable water isotopes in surface seawater along the 33rd Chinese National Antarctic Science Expedition from November 2016 to April 2017,this study explored the hydrological processes in the Pacific,Indian and Southern oceans.The results show that the Northwest Pacific(0°–26°N)is a region with strong evaporation(theδ18O-δD slope is 6.58),while the southern Indian Ocean is a region with strong precipitation(theδ18O-δD slope is 9.57).The influence of continental runoff and water mass mixing reduces the correlation betweenδ18O and salinity in the eastern Indian Ocean.The characteristics of the isotopes and hydrological parameters indicate that the Agulhas Front and sub-Tropical Convergence do not merge in the Antarctic–Indian Ocean region.The freezing of sea ice near the Antarctic continent decreases theδ18O andδD by 0.40‰and 7.0‰,respectively,compared with those near 67°S.This study is helpful for understanding marine hydrological processes and promoting the understanding and research of the nature of ocean responses in the context of climate change.展开更多
Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remed...Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remedy this issue,a large body of research has been performed in recent years and many new algorithms have been proposed.This paper provides a comprehensive survey of the research on MOPs with irregular Pareto fronts.We start with a brief introduction to the basic concepts,followed by a summary of the benchmark test problems with irregular problems,an analysis of the causes of the irregularity,and real-world optimization problems with irregular Pareto fronts.Then,a taxonomy of the existing methodologies for handling irregular problems is given and representative algorithms are reviewed with a discussion of their strengths and weaknesses.Finally,open challenges are pointed out and a few promising future directions are suggested.展开更多
This paper overviews research progress in observation, theoretical analysis and numerical modeling of submesoscale dynamic processes in the South China Sea(SCS) particularly during recent five years. The submesoscale ...This paper overviews research progress in observation, theoretical analysis and numerical modeling of submesoscale dynamic processes in the South China Sea(SCS) particularly during recent five years. The submesoscale processes are defined according to both spatial and dynamic scales, and divided into four subcategories as submesoscale waves, submesoscale vortexes, submesoscale shelf processes, and submesoscale turbulence. The major new findings are as follows.(1) Systematic mooring observations provide new insights into the solitary waves(ISWs) and the typhoon-forced near-inertial waves(NIWs), of which a new type of ISWs with period of 23 h was observed in the northern SCS(NSCS), and the influences of background vorticity, summer monsoon onset, and deep meridional overturning circulation on the NIWs, as well as nonlinear wave-wave interaction between the NIWs and internal tides, are better understood. On the other hand, satellite altimeter sea surface height data are used to reveal the internal tide radiation patterns and provide solid evidence for that the ISWs in the northeastern SCS originate from the Luzon Strait.(2) Submesoscale offshore jets and associated vortex trains off the Vietnam coast in the western boundary of the SCS were observed from satellite chlorophyll concentration images. Spiral trains with the horizontal scale of 15–30 km and the spacing of 50–80 km were identified.(3) 3-D vertical circulation in the upwelling region east of Hainan Island was theoretically analyzed. The results show that distribution patterns of all the dynamic terms are featured by wave-like structures with horizontal wavelength scale of 20–40 km.(4) Numerical models have been used for the research of submesoscale turbulence. Submesoscale vertical pump of an anticyclonic eddy and the spatiotemporal features of submesoscale processes in the northeastern SCS are well modeled.展开更多
Calcium antagonists are widely used in the clinical treatment of ischemic cerebrovascular disease because of their vascular and neuroprotective effects. Nimodipine, a typical calcium antagonist, can cross the blood-br...Calcium antagonists are widely used in the clinical treatment of ischemic cerebrovascular disease because of their vascular and neuroprotective effects. Nimodipine, a typical calcium antagonist, can cross the blood-brain barrier and act selectively at neurons and blood vessels of target tis-sues, thus exerting neuroprotective effects. The aim of the present study was to explore the hot spots and future trends of research on the neuroprotective effects of nimodipine. We retrieved 425 articles on the neuroprotective effects of nimodipine that were indexed in the Web of the Science database between 2000 and 2014. The retrieved articles were analyzed using document analysis reporting and the derived information function in the Web of Science, and the infor-mation visualization software CiteSpace III. The reference co-citation network was plotted, and the high frequency key words in these publications were used to analyze the research fronts and development trends for nimodipine neuroprotection. According to these co-citation clusters, the research front of nimodipine neuroprotection is the use of randomized controlled trials to study nimodipine intervention of subarachnoid hemorrhage. Using time zone view analysis on hot spots labeled with a key word, the areas of interest in the ifeld of nimodipine neuroprotection are nimodipine pharmacology and therapeutics, blood-brain barrier, trials, and anti-angiospasm.展开更多
Aict f Finjte rmvedrig wave (M) so1uhons fOr the fOllowhg sechear syttem (I){u_t-u_(xx)+u^mv^p=0 u_t-v_(xx)+u^q=0 -∞<x<+∞,t>0,p,q>0,m≥0 are studied. SolutiOns to (I) of the fOrm u (x, t)=lt(ct--x), v(...Aict f Finjte rmvedrig wave (M) so1uhons fOr the fOllowhg sechear syttem (I){u_t-u_(xx)+u^mv^p=0 u_t-v_(xx)+u^q=0 -∞<x<+∞,t>0,p,q>0,m≥0 are studied. SolutiOns to (I) of the fOrm u (x, t)=lt(ct--x), v(x, t)=v (cl--X) are called W soIutiOns if there exjstS a fwite ', such that u({)=v(j)=0 for t<{,':=ct--x. It is proVed that if Pq+nl<l, fOr any ed c thele erktS an FTW that is inhque up to phase transIahons and Is unbOunded, whena no rm ekist if pq+m> l. The asmpptohc weve profileS near the front as well as far from it are also determined. If I)q^m = l. the exjstence of travebe wave soluhons to (I) is proved. The plnof in Esqniruis's paper(1990) for the one m=0 co be sdriplified by using the methOd develOped in thjs paper.展开更多
1.Introduction Engineering science and technology is an important driving force in changing the world,and engineering frontiers(here referred to as“engineering fronts”)are important guidelines for future directions ...1.Introduction Engineering science and technology is an important driving force in changing the world,and engineering frontiers(here referred to as“engineering fronts”)are important guidelines for future directions in the development of engineering science and technology.Grasping trends in global engineering science and technology and quickly adapting to new directions in the current scientific and technological revolution have become strategic choices for countries all over the world.Since 2017,the Chinese Academy of Engineering has organized the Engineering Fronts research project,together with Clarivate Analytics and Higher Education Press,with the hope of bringing together the expert knowledge of global engineering and technology talents,assessing global frontiers in engineering research and development,and developing strategic opportunities to provide a reference for active responses to global challenges and sustainable development.展开更多
The velocity components across tidal fronts are examined using the Blumberg and Mellor 3-D nonlinear numerical coastal circulation model incorporated with the Mellor and Yamada level 2.5 turbulent closure model based ...The velocity components across tidal fronts are examined using the Blumberg and Mellor 3-D nonlinear numerical coastal circulation model incorporated with the Mellor and Yamada level 2.5 turbulent closure model based on the reasonable model output of the M<SUB>2</SUB> tide and density residual currents. In the numerical experiments, upwelling motion appears around all the fronts with different velocity structures, accounting for surface cold water around the fronts. The experiments also suggest that the location and formation of fronts are closely related to topography and tidal mixing, as is the velocity structure around the front.展开更多
The compressible Rayleigh-Taylor instability of accelerated ablation front is analysed in consideration of the preheat effects, and the corresponding eigen-problem is solved numerically using the fourth-order accurate...The compressible Rayleigh-Taylor instability of accelerated ablation front is analysed in consideration of the preheat effects, and the corresponding eigen-problem is solved numerically using the fourth-order accurate two- point compact difference scheme. Both the growth rate and perturbation profiles are obtained, and the obtained growth rate is close to the results of direct numerical simulation. Our results show that the growth rate is more reduced and the cutoff wave length becomes longer as preheat increases.展开更多
The trends of the sea surface temperature(SST) and SST fronts in the South China Sea(SCS) are analyzed during2003–2017 using high-resolution satellite data. The linear trend of the basin averaged SST is 0.31°C p...The trends of the sea surface temperature(SST) and SST fronts in the South China Sea(SCS) are analyzed during2003–2017 using high-resolution satellite data. The linear trend of the basin averaged SST is 0.31°C per decade,with the strongest warming identified in southeastern Vietnam. Although the rate of warming is comparable in summer and winter for the entire basin, the corresponding spatial patterns of the linear trend are substantially different between them. The SST trend to the west of the Luzon Strait is characterized by rapid warming in summer, exceeding approximately 0.6°C per decade, but the trend is insignificant in winter. The strongest warming trend occurs in the southeast of Vietnam in winter, with much less pronounced warming in summer. A positive trend of SST fronts is identified for the coast of China and is associated with increasing wind stress. The increasing trend of SST fronts is also found in the east of Vietnam. Large-scale circulation, such as El Ni?o, can influence the trends of the SST and SST fronts. A significant correlation is found between the SST anomaly and Ni?o3.4 index, and the ENSO signal leads by eight months. The basin averaged SST linear trends increase after the El Ni?o event(2009–2010), which is, at least, due to the rapid warming rate causing by the enhanced northeasterly wind. Peaks of positive anomalous SST and negatively anomalous SST fronts are found to co-occur with the strong El Ni?o events.展开更多
This study investigates the submesoscale fronts and their dynamic effects on the mean flow due to frontal instabilities in the wind-driven summer offshore jet of the western South China Sea(WSCS),using satellite obser...This study investigates the submesoscale fronts and their dynamic effects on the mean flow due to frontal instabilities in the wind-driven summer offshore jet of the western South China Sea(WSCS),using satellite observations,a 500 m-resolution numerical simulation,and diagnostic analysis.Both satellite measurements and simulation results show that the submesoscale fronts occupying a typical lateral scale of O(~10)km are characterized with one order of Rossby(Ro)and Richardson(Ri)numbers in the WSCS.This result implies that both geostrophic and ageostrophic motions feature in these submesoscale fronts.The diagnostic results indicate that a net cross-frontal Ekman transport driven by down-front wind forcing effectively advects cold water over warm water.By this way,the weakened local stratification and strong lateral buoyancy gradients are conducive to a negative Ertel potential vorticity(PV)and triggering frontal symmetric instability(SI)at the submesoscale density front.The cross-front ageostrophic secondary circulation caused by frontal instabilities is found to drive an enhanced vertical velocity reaching O(100)m/d.Additionally,the estimate of the down-front wind forcing the Ekman buoyancy flux(EBF)is found to be scaled with the geostrophic shear production(GSP)and buoyancy flux(BFLUX),which are the two primary energy sources for submesoscale turbulence.The large values of GSP and BFLUX at the fronts suggest an efficient downscale energy transfer from larger-scale geostrophic flows to the submesoscale turbulence owing to down-front wind forcing and frontal instabilities.In this content,submesoscale fronts and their instabilities substantially enhance the local vertical exchanges and geostrophic energy cascade towards smaller-scale.These active submesoscale processes associated density fronts and filaments likely provide new physical interpretations for the filamentary high chlorophyll concentration and frontal downscale energy transfer in the WSCS.展开更多
The soil freezing and thawing process affects soil physical properties,such as heat conductivity,heat capacity,and hydraulic conductivity in frozen ground regions,and further affects the processes of soil energy,hydro...The soil freezing and thawing process affects soil physical properties,such as heat conductivity,heat capacity,and hydraulic conductivity in frozen ground regions,and further affects the processes of soil energy,hydrology,and carbon and nitrogen cycles.In this study,the calculation of freezing and thawing front parameterization was implemented into the earth system model of the Chinese Academy of Sciences(CAS-ESM)and its land component,the Common Land Model(CoLM),to investigate the dynamic change of freezing and thawing fronts and their effects.Our results showed that the developed models could reproduce the soil freezing and thawing process and the dynamic change of freezing and thawing fronts.The regionally averaged value of active layer thickness in the permafrost regions was 1.92 m,and the regionally averaged trend value was 0.35 cm yr–1.The regionally averaged value of maximum freezing depth in the seasonally frozen ground regions was 2.15 m,and the regionally averaged trend value was–0.48 cm yr–1.The active layer thickness increased while the maximum freezing depth decreased year by year.These results contribute to a better understanding of the freezing and thawing cycle process.展开更多
Applying the methods of on-site observation and dynamic model, the research on the fronts at the Jiulong Estuary has been carried out, during which spatial and temporal distribution, dynamic characteristics and format...Applying the methods of on-site observation and dynamic model, the research on the fronts at the Jiulong Estuary has been carried out, during which spatial and temporal distribution, dynamic characteristics and formation mechanism of salinity fronts are analyzed and discussed. The research shows that the estuarine fronts mainly lie in the area from the Jiyu Islet to the Haimen Island, outside of Yuweizai to Hulishan cross-section, the near coast of Yuweizai and the south of the Songyu-Gulangyu Channel. The fronts in the former two regions are formed directly by plume, while the one near the coast of Yuweizai is a tidal intrusion front caused by flood current and the one at the south of the Songyu-Gulangyu Channel is the result of current shear transformation. Under normal circumstances, fresh water of the Jiulong River mainly influences the inside of the Xiamen Bay, and when it is in typhoon seasons, plume front can affect the Taiwan Strait and has an effect on the biogeochemical Drocesses in the strait.展开更多
A 3-D Finite-Volume Coastal Ocean Model was applied in the Bohai Sea,especially near the Yellow River estuary, to simulate the tides, tidal currents, residualcurrents and shear fronts, using unstructured triangular gr...A 3-D Finite-Volume Coastal Ocean Model was applied in the Bohai Sea,especially near the Yellow River estuary, to simulate the tides, tidal currents, residualcurrents and shear fronts, using unstructured triangular grids. In the case of anaccurate simulation of the tides and tidal currents in the Bohai Sea, this article focuseson the Yellow River mouth. The type of tides is irregular semi-diurnal and the type oftidal currents is the reciprocating flow, mostly parallel to the coastline. The tide inducedeulerian residual currents are a couple of eddies on each side of the river mouth, withthe anticlockwise on the left side and clockwise on the other side, and both of theeddies are enhanced by the Yellow River runoff. Two patterns of shear fronts areidentified at the conversion between the flood and ebb tidal phase. The results suggestthat the shear fronts be generated in the shallow water because the tidal phase of thecoastal area is ahead of the deeper seaward area, then moves seaward and finallydisappears 1-2 hours later.展开更多
Neon flying squid, Ommastrephes bartramii, is a squid species of the North Pacific Ocean, which plays an important economical role in the international fishery. Logbook data for Chinese squid-jigging fishery over 2004...Neon flying squid, Ommastrephes bartramii, is a squid species of the North Pacific Ocean, which plays an important economical role in the international fishery. Logbook data for Chinese squid-jigging fishery over 2004–2011 were used to evaluate the relationship between the fishing grounds of the squid and the convergent frontal areas, which were defined by the contour lines of specific sea surface temperature(SST) and chlorophyll-a(Chl-a) concentration. Our results indicate that the SST in the range of 15 to 19℃ and the Chl-a concentration in the range of 0.1 to 0.4 mg m^(-3) are the favorable conditions for the aggregation of the squid. Additionally, we deduced that the SST at 17.5℃ and the Chl-a concentration at 0.25 mg m^(-3) are the optimal environmental conditions for the aggregation of O. bartramii. In August, the annual CPUE is positively correlated with the proportion of the fishing grounds with favorable SST and Chl-a concentration, as well as the combination of the two variables, implying that the abundance of the squid annually is largely depending on the presence of the favorable environmental conditions for fishery in August. Minor spatial difference between mean latitudinal location of the 17.5℃ SST and 0.25 mg m^(-3) Chl-a fronts can increase the CPUEs of O. bartramii. Furthermore, the monthly latitudinal gravity centers of the CPUE closely followed the mean latitudinal position of the contour lines of the 17.5℃ SST and the 0.25 mg m^(-3) Chl-a concentration. Our findings suggest the convergent oceanographic features(fronts) play significant roles in regulating the distribution and abundance of the western stock of the winter-spring cohort of O. bartramii, which can help people to improve their ability to discover the O. bartramii fishing grounds with higher productivity.展开更多
The weakly nonlinear regime of single mode ablative Rayleigh-Taylor instability is studied, with consideration of preheat effect and the width of the ablation front. The Rayleigh-Taylor linear growth rate agrees well ...The weakly nonlinear regime of single mode ablative Rayleigh-Taylor instability is studied, with consideration of preheat effect and the width of the ablation front. The Rayleigh-Taylor linear growth rate agrees well with the direct numerical simulation. For the density perturbation, the amplitude distribution of the fundamental mode has one peak value whereas those of the second and third harmonics have two and three peak values, respectively. Harmonics generation versus wave number is also given and it is close to the result of direct numerical simulation.展开更多
Fronts, baroclinic transport, and mesoscale variability of the Antarctic Circumpolar Current (ACC) along 115°E are examined on the basis of CTD data from two hydrographic cruises occupied in 1995 as a part of t...Fronts, baroclinic transport, and mesoscale variability of the Antarctic Circumpolar Current (ACC) along 115°E are examined on the basis of CTD data from two hydrographic cruises occupied in 1995 as a part of the World Ocean Circulation Experiment (WOCE cruise I9S) and in 2004 as a part of CLIVAR/CO2 repeat hydrography program. The integrated baroclinic transport across I9S section is (97.2×106±2.2×106) m3/s relative to the deepest common level (DCL). The net transport at the north end of I9S, determined by the south Australian circulation system, is about 16.5× 106 m3/s westward. Relying on a consistent set of water mass criteria and transport maxima, the ACC baroclinic transport, (117×106±6.7×106) m3/s to the east, is carried along three fronts: the Subantarctic Front (SAF) at a mean latitude of 44°-49°S carries (50.6×106=t=13.4×106) m3/s; the Polar Front (PF), with the northern branch (PF-N) at 50.5°S and the southern branch (PF- S) at 58°S, carries (51.3×106±8.7×106) m3/s; finally, the southern ACC front (SACCF) and the southern boundary of the ACC (SB) consist of three cores between 59°S and 65°S that combined carry (15.2× 106±1.8× 106) m3/s. Mesoscale eddy features are identifiable in the CTD sections and tracked in concurrent maps of altimetric sea level anomalies (SLA) between 44°-48°S and 53°-57°S. Because of the remarkable mesoseale eddy features within the SAF observed in both the tracks of the cruises, the eastward transport of the SAF occurs at two latitude bands separating by 1°. Both the CTD and the altimetric data suggest that the mesoscale variability is concentrated around the Antarctic Polar Frontal Zone (APFZ) and causes the ACC fronts to merge, diverge, and to fluctuate in intensity and position along their paths.展开更多
The generation of high-resolution data is increasingly important in understanding the complexities of coastal ocean and developing sound management strategies, especially in view of the long-term impact of severe weat...The generation of high-resolution data is increasingly important in understanding the complexities of coastal ocean and developing sound management strategies, especially in view of the long-term impact of severe weather systems. The impact of severe weather systems, when integrated over time, can be significant when compared with tidal oscillations. This paper presents a study of water transport out of Vermilion Bay in response to a short, intense event associated with a passing atmospheric cold front, and reports the application of an Acoustic Doppler Current Profiler (ADCP) mounted on an Automated Surface Craft (ASC), known as the auto-boat or unmanned boat, developed in our lab at the Louisiana State University, to generate high resolution data accurately at a fraction of the cost of a manned boat. In our study, we used a manned boat and an unmanned boat, each for over 24 h to cover an entire diurnal tidal cycle, to measure flow velocity profiles to calculate the total transport. A stationary ADCP was deployed in the Southwest Pass of the Vermilion Bay from May 2009 to April 2012, providing data almost continuously (with only one major gap), with a 717-day record of water transport between the northern Gulf of Mexico and Vermilion Bay, and demonstrates the importance of the pass in water transport.展开更多
The baroclinic nonlinear stability of fronts in the ocean on a sloping continental shelf is studied, the model equations, called the frontal geostrophic model, developed by Cushman—Roisin et al.(1992) for describing ...The baroclinic nonlinear stability of fronts in the ocean on a sloping continental shelf is studied, the model equations, called the frontal geostrophic model, developed by Cushman—Roisin et al.(1992) for describing the dynamics of surface density fronts in the ocean are developed and the two—layer frontal geostrophic model for fronts on a sloping continental shelf is first obtained. The nonlinear stability criteria for the fronts on a sloping bottom are obtained by using Arnol’d (1965, 1969) variational principle and a prior estimate method. It is shown that our result is better than the former works. Key words Fronts in the ocean - Frontal geostrophic model - Nonlinear stability This Work was supported by “ the National Key Programme for Developing Basic Sciences” G199804901-1 and the National Natural Science Foundation of China “ Research Programme for Excellent State Key Laboratory” under Grant No. 49823002 and No. 49805002.展开更多
基金The National Key Research and Development Program of China under contact No.2021YFC3101702the Natural Science Foundation of Zhejiang Province under contact Nos LY22D060006 and LY14D060007+1 种基金the Key R&D Program of Zhejiang under contact No.2022C03044the Project of Long-term Observation and Research Plan in the Changjiang Estuary and Adjacent East China Sea (LORCE) under contact No.SZ2001。
文摘Ocean fronts play important roles in nutrient transport and in the shaping ecological patterns.Frontal zones in small bays are typically small in scale,have a complex structure,and they are spatially and temporally variable,but there are limited data on how biological communities respond to this variation.Hangzhou Bay,a mediumsized estuary in China,is an ideal place in which to study the response of plankton to small-scale ocean fronts,because three water masses(Qiantang River Diluted Water,Changjiang River Diluted Water,and the East China Sea current) converge here and form dynamic salinity fronts throughout the year.We investigate zooplankton communities,and temperature,salinity and chlorophyll a(Chl a) in Hangzhou Bay in June(wet perio d) and December(dry period) of 2022 and examine the dominant environmental factors that affect zooplankton community spatial variability.We then match the spatial distributions of zooplankton communities with those of salinity fronts.S alinity is the most important explanatory variable to affect zooplankton community spatial variability during both wet and dry periods,in that it contributes>60% of the variability in community structure.Furthermore,the spatial distributions of zooplankton match well with salinity fronts.During December,with weaker Qiantang River Diluted Water and a stronger secondary Changjiang River Plume,zooplankton communities occur in moderate salinity(MS,salinity range 15.6±2.2) and high salinity(HS,22.4±1.7) regions,and their ecological boundaries closely match the Qiantang River Diluted Water front.In June,different zooplankton communities occur in low salinity(LS,3.9±1.0),MS(11.7±3.6) and HS(21.3±1.9) regions.Although the LS region occurs abnormally in the central bay rather than its apex because of the anomalous influence of rising and falling tides during the sampling perio d,the ecological boundaries still match salinity interfaces.Low-salinity or brackish-water zooplankter taxa are relatively more abundant in LS or MS regions,and the biomass and abundance of zooplankton is higher in the MS region.
基金The National Natural Science Foundation of China under contract No.42122047the Basic Research Fund of Chinese Academy of Meteorological Sciences under contract Nos 2021Z006,2023Z015 and 2023Z005the Chinese National Antarctic Science Expedition.
文摘The marine hydrological process is still unclear due to scarce observations.Based on stable water isotopes in surface seawater along the 33rd Chinese National Antarctic Science Expedition from November 2016 to April 2017,this study explored the hydrological processes in the Pacific,Indian and Southern oceans.The results show that the Northwest Pacific(0°–26°N)is a region with strong evaporation(theδ18O-δD slope is 6.58),while the southern Indian Ocean is a region with strong precipitation(theδ18O-δD slope is 9.57).The influence of continental runoff and water mass mixing reduces the correlation betweenδ18O and salinity in the eastern Indian Ocean.The characteristics of the isotopes and hydrological parameters indicate that the Agulhas Front and sub-Tropical Convergence do not merge in the Antarctic–Indian Ocean region.The freezing of sea ice near the Antarctic continent decreases theδ18O andδD by 0.40‰and 7.0‰,respectively,compared with those near 67°S.This study is helpful for understanding marine hydrological processes and promoting the understanding and research of the nature of ocean responses in the context of climate change.
基金supported in part by the National Natural Science Foundation of China(61806051,61903078)Natural Science Foundation of Shanghai(20ZR1400400)+2 种基金Agricultural Project of the Shanghai Committee of Science and Technology(16391902800)the Fundamental Research Funds for the Central Universities(2232020D-48)the Project of the Humanities and Social Sciences on Young Fund of the Ministry of Education in China(Research on swarm intelligence collaborative robust optimization scheduling for high-dimensional dynamic decisionmaking system(20YJCZH052))。
文摘Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remedy this issue,a large body of research has been performed in recent years and many new algorithms have been proposed.This paper provides a comprehensive survey of the research on MOPs with irregular Pareto fronts.We start with a brief introduction to the basic concepts,followed by a summary of the benchmark test problems with irregular problems,an analysis of the causes of the irregularity,and real-world optimization problems with irregular Pareto fronts.Then,a taxonomy of the existing methodologies for handling irregular problems is given and representative algorithms are reviewed with a discussion of their strengths and weaknesses.Finally,open challenges are pointed out and a few promising future directions are suggested.
基金The National Natural Science Foundation of China under contract Nos 41776034,41376038,40406009,41806123 and 41506034the National Science and Technology Major Project under contract No.2016ZX05057015+1 种基金the Guangdong Province First-Class Discipline Plan under contract No.CYL231419012the Fund of Southern Marine Science and Engineering Guangdong Laboratory(Zhanjiang)under contract No.ZJW-2019-08
文摘This paper overviews research progress in observation, theoretical analysis and numerical modeling of submesoscale dynamic processes in the South China Sea(SCS) particularly during recent five years. The submesoscale processes are defined according to both spatial and dynamic scales, and divided into four subcategories as submesoscale waves, submesoscale vortexes, submesoscale shelf processes, and submesoscale turbulence. The major new findings are as follows.(1) Systematic mooring observations provide new insights into the solitary waves(ISWs) and the typhoon-forced near-inertial waves(NIWs), of which a new type of ISWs with period of 23 h was observed in the northern SCS(NSCS), and the influences of background vorticity, summer monsoon onset, and deep meridional overturning circulation on the NIWs, as well as nonlinear wave-wave interaction between the NIWs and internal tides, are better understood. On the other hand, satellite altimeter sea surface height data are used to reveal the internal tide radiation patterns and provide solid evidence for that the ISWs in the northeastern SCS originate from the Luzon Strait.(2) Submesoscale offshore jets and associated vortex trains off the Vietnam coast in the western boundary of the SCS were observed from satellite chlorophyll concentration images. Spiral trains with the horizontal scale of 15–30 km and the spacing of 50–80 km were identified.(3) 3-D vertical circulation in the upwelling region east of Hainan Island was theoretically analyzed. The results show that distribution patterns of all the dynamic terms are featured by wave-like structures with horizontal wavelength scale of 20–40 km.(4) Numerical models have been used for the research of submesoscale turbulence. Submesoscale vertical pump of an anticyclonic eddy and the spatiotemporal features of submesoscale processes in the northeastern SCS are well modeled.
基金The National Natural Science Foundation of Chinathe National Key Basic Research and Development Program(973 Program)of China sponsored 18 of the articles retrieved in our search+6 种基金The National Commission on Science and Technology Development in Brazil sponsored 6 publicationsThe Coordenao de Aperfeioamento de Pessoal de Nível Superior(the Brazilian Federal Agency for the Support and Evaluation of Graduate Education)sponsored four publicationsthe Oak Ridge Institute for Science and EducationNIH ProjectKyung Hee UniversityGerman Federal Ministry of Education and ResearchBayer Vital Gmb H Leverkusen each provided funding for two studies(Figure 5)
文摘Calcium antagonists are widely used in the clinical treatment of ischemic cerebrovascular disease because of their vascular and neuroprotective effects. Nimodipine, a typical calcium antagonist, can cross the blood-brain barrier and act selectively at neurons and blood vessels of target tis-sues, thus exerting neuroprotective effects. The aim of the present study was to explore the hot spots and future trends of research on the neuroprotective effects of nimodipine. We retrieved 425 articles on the neuroprotective effects of nimodipine that were indexed in the Web of the Science database between 2000 and 2014. The retrieved articles were analyzed using document analysis reporting and the derived information function in the Web of Science, and the infor-mation visualization software CiteSpace III. The reference co-citation network was plotted, and the high frequency key words in these publications were used to analyze the research fronts and development trends for nimodipine neuroprotection. According to these co-citation clusters, the research front of nimodipine neuroprotection is the use of randomized controlled trials to study nimodipine intervention of subarachnoid hemorrhage. Using time zone view analysis on hot spots labeled with a key word, the areas of interest in the ifeld of nimodipine neuroprotection are nimodipine pharmacology and therapeutics, blood-brain barrier, trials, and anti-angiospasm.
文摘Aict f Finjte rmvedrig wave (M) so1uhons fOr the fOllowhg sechear syttem (I){u_t-u_(xx)+u^mv^p=0 u_t-v_(xx)+u^q=0 -∞<x<+∞,t>0,p,q>0,m≥0 are studied. SolutiOns to (I) of the fOrm u (x, t)=lt(ct--x), v(x, t)=v (cl--X) are called W soIutiOns if there exjstS a fwite ', such that u({)=v(j)=0 for t<{,':=ct--x. It is proVed that if Pq+nl<l, fOr any ed c thele erktS an FTW that is inhque up to phase transIahons and Is unbOunded, whena no rm ekist if pq+m> l. The asmpptohc weve profileS near the front as well as far from it are also determined. If I)q^m = l. the exjstence of travebe wave soluhons to (I) is proved. The plnof in Esqniruis's paper(1990) for the one m=0 co be sdriplified by using the methOd develOped in thjs paper.
文摘1.Introduction Engineering science and technology is an important driving force in changing the world,and engineering frontiers(here referred to as“engineering fronts”)are important guidelines for future directions in the development of engineering science and technology.Grasping trends in global engineering science and technology and quickly adapting to new directions in the current scientific and technological revolution have become strategic choices for countries all over the world.Since 2017,the Chinese Academy of Engineering has organized the Engineering Fronts research project,together with Clarivate Analytics and Higher Education Press,with the hope of bringing together the expert knowledge of global engineering and technology talents,assessing global frontiers in engineering research and development,and developing strategic opportunities to provide a reference for active responses to global challenges and sustainable development.
基金the Chinese Academy of Sciences(No.131,100 tal-ents project),the National Key Fundamental DevelopingProject(No.G19990437-02,-08)and the National Natu-ral Science Foundation of China(No.49976032 and No.49928605).
文摘The velocity components across tidal fronts are examined using the Blumberg and Mellor 3-D nonlinear numerical coastal circulation model incorporated with the Mellor and Yamada level 2.5 turbulent closure model based on the reasonable model output of the M<SUB>2</SUB> tide and density residual currents. In the numerical experiments, upwelling motion appears around all the fronts with different velocity structures, accounting for surface cold water around the fronts. The experiments also suggest that the location and formation of fronts are closely related to topography and tidal mixing, as is the velocity structure around the front.
文摘The compressible Rayleigh-Taylor instability of accelerated ablation front is analysed in consideration of the preheat effects, and the corresponding eigen-problem is solved numerically using the fourth-order accurate two- point compact difference scheme. Both the growth rate and perturbation profiles are obtained, and the obtained growth rate is close to the results of direct numerical simulation. Our results show that the growth rate is more reduced and the cutoff wave length becomes longer as preheat increases.
基金The National Key Research and Development Program of China under contract No.2016YFC1401601the Scientific Research Fund of the Second Institute of Oceanography,MNR under contract No.JB1806+1 种基金the National Natural Science Foundation of China under contract Nos 41806026,41806041,41706036 and 41730536the Project of State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography,MNR under contract No.SOEDZZ1902
文摘The trends of the sea surface temperature(SST) and SST fronts in the South China Sea(SCS) are analyzed during2003–2017 using high-resolution satellite data. The linear trend of the basin averaged SST is 0.31°C per decade,with the strongest warming identified in southeastern Vietnam. Although the rate of warming is comparable in summer and winter for the entire basin, the corresponding spatial patterns of the linear trend are substantially different between them. The SST trend to the west of the Luzon Strait is characterized by rapid warming in summer, exceeding approximately 0.6°C per decade, but the trend is insignificant in winter. The strongest warming trend occurs in the southeast of Vietnam in winter, with much less pronounced warming in summer. A positive trend of SST fronts is identified for the coast of China and is associated with increasing wind stress. The increasing trend of SST fronts is also found in the east of Vietnam. Large-scale circulation, such as El Ni?o, can influence the trends of the SST and SST fronts. A significant correlation is found between the SST anomaly and Ni?o3.4 index, and the ENSO signal leads by eight months. The basin averaged SST linear trends increase after the El Ni?o event(2009–2010), which is, at least, due to the rapid warming rate causing by the enhanced northeasterly wind. Peaks of positive anomalous SST and negatively anomalous SST fronts are found to co-occur with the strong El Ni?o events.
基金supported by the Chinese Academy of Sciences under contract Nos ZDBS-LY-DQC011ZDRW-XH-2019-2 and ISEE2018PY05+4 种基金the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)under contract No.GML2019ZD0303the National Natural Science Foundation of China under contract Nos 41776040 and 92058201the Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.OCFL-201804the State Key Laboratory of Tropical Oceanography under contract No.LTO1907the Guangzhou Science and Technology Project under contract No.201904010420。
文摘This study investigates the submesoscale fronts and their dynamic effects on the mean flow due to frontal instabilities in the wind-driven summer offshore jet of the western South China Sea(WSCS),using satellite observations,a 500 m-resolution numerical simulation,and diagnostic analysis.Both satellite measurements and simulation results show that the submesoscale fronts occupying a typical lateral scale of O(~10)km are characterized with one order of Rossby(Ro)and Richardson(Ri)numbers in the WSCS.This result implies that both geostrophic and ageostrophic motions feature in these submesoscale fronts.The diagnostic results indicate that a net cross-frontal Ekman transport driven by down-front wind forcing effectively advects cold water over warm water.By this way,the weakened local stratification and strong lateral buoyancy gradients are conducive to a negative Ertel potential vorticity(PV)and triggering frontal symmetric instability(SI)at the submesoscale density front.The cross-front ageostrophic secondary circulation caused by frontal instabilities is found to drive an enhanced vertical velocity reaching O(100)m/d.Additionally,the estimate of the down-front wind forcing the Ekman buoyancy flux(EBF)is found to be scaled with the geostrophic shear production(GSP)and buoyancy flux(BFLUX),which are the two primary energy sources for submesoscale turbulence.The large values of GSP and BFLUX at the fronts suggest an efficient downscale energy transfer from larger-scale geostrophic flows to the submesoscale turbulence owing to down-front wind forcing and frontal instabilities.In this content,submesoscale fronts and their instabilities substantially enhance the local vertical exchanges and geostrophic energy cascade towards smaller-scale.These active submesoscale processes associated density fronts and filaments likely provide new physical interpretations for the filamentary high chlorophyll concentration and frontal downscale energy transfer in the WSCS.
基金This work was jointly funded by the National Natural Science Foundation of China(Grant Nos.42205168,41830967,and 42175163)the Youth Innovation Promotion Association CAS(2021073)the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(EarthLab).
文摘The soil freezing and thawing process affects soil physical properties,such as heat conductivity,heat capacity,and hydraulic conductivity in frozen ground regions,and further affects the processes of soil energy,hydrology,and carbon and nitrogen cycles.In this study,the calculation of freezing and thawing front parameterization was implemented into the earth system model of the Chinese Academy of Sciences(CAS-ESM)and its land component,the Common Land Model(CoLM),to investigate the dynamic change of freezing and thawing fronts and their effects.Our results showed that the developed models could reproduce the soil freezing and thawing process and the dynamic change of freezing and thawing fronts.The regionally averaged value of active layer thickness in the permafrost regions was 1.92 m,and the regionally averaged trend value was 0.35 cm yr–1.The regionally averaged value of maximum freezing depth in the seasonally frozen ground regions was 2.15 m,and the regionally averaged trend value was–0.48 cm yr–1.The active layer thickness increased while the maximum freezing depth decreased year by year.These results contribute to a better understanding of the freezing and thawing cycle process.
文摘Applying the methods of on-site observation and dynamic model, the research on the fronts at the Jiulong Estuary has been carried out, during which spatial and temporal distribution, dynamic characteristics and formation mechanism of salinity fronts are analyzed and discussed. The research shows that the estuarine fronts mainly lie in the area from the Jiyu Islet to the Haimen Island, outside of Yuweizai to Hulishan cross-section, the near coast of Yuweizai and the south of the Songyu-Gulangyu Channel. The fronts in the former two regions are formed directly by plume, while the one near the coast of Yuweizai is a tidal intrusion front caused by flood current and the one at the south of the Songyu-Gulangyu Channel is the result of current shear transformation. Under normal circumstances, fresh water of the Jiulong River mainly influences the inside of the Xiamen Bay, and when it is in typhoon seasons, plume front can affect the Taiwan Strait and has an effect on the biogeochemical Drocesses in the strait.
基金supported by National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2014BAB12B02)Key Technologies Research and Development Program of Tianjin (14ZCZDSF00012)
文摘A 3-D Finite-Volume Coastal Ocean Model was applied in the Bohai Sea,especially near the Yellow River estuary, to simulate the tides, tidal currents, residualcurrents and shear fronts, using unstructured triangular grids. In the case of anaccurate simulation of the tides and tidal currents in the Bohai Sea, this article focuseson the Yellow River mouth. The type of tides is irregular semi-diurnal and the type oftidal currents is the reciprocating flow, mostly parallel to the coastline. The tide inducedeulerian residual currents are a couple of eddies on each side of the river mouth, withthe anticlockwise on the left side and clockwise on the other side, and both of theeddies are enhanced by the Yellow River runoff. Two patterns of shear fronts areidentified at the conversion between the flood and ebb tidal phase. The results suggestthat the shear fronts be generated in the shallow water because the tidal phase of thecoastal area is ahead of the deeper seaward area, then moves seaward and finallydisappears 1-2 hours later.
基金supported by the China Postdoctoral Science Foundation (No.2017M611612)the Doctoral Startup Scientific Research Foundation of Shanghai Ocean University (No.A2-0203-17-100313)+2 种基金the National Key Technologies R&D Program of China (No.2013BAD13B01)the Open Fund for Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources in Shanghai Ocean University (No.A1-0203-002009-5)the Shanghai Universities First-Class Disciplines Project (Fisheries A)
文摘Neon flying squid, Ommastrephes bartramii, is a squid species of the North Pacific Ocean, which plays an important economical role in the international fishery. Logbook data for Chinese squid-jigging fishery over 2004–2011 were used to evaluate the relationship between the fishing grounds of the squid and the convergent frontal areas, which were defined by the contour lines of specific sea surface temperature(SST) and chlorophyll-a(Chl-a) concentration. Our results indicate that the SST in the range of 15 to 19℃ and the Chl-a concentration in the range of 0.1 to 0.4 mg m^(-3) are the favorable conditions for the aggregation of the squid. Additionally, we deduced that the SST at 17.5℃ and the Chl-a concentration at 0.25 mg m^(-3) are the optimal environmental conditions for the aggregation of O. bartramii. In August, the annual CPUE is positively correlated with the proportion of the fishing grounds with favorable SST and Chl-a concentration, as well as the combination of the two variables, implying that the abundance of the squid annually is largely depending on the presence of the favorable environmental conditions for fishery in August. Minor spatial difference between mean latitudinal location of the 17.5℃ SST and 0.25 mg m^(-3) Chl-a fronts can increase the CPUEs of O. bartramii. Furthermore, the monthly latitudinal gravity centers of the CPUE closely followed the mean latitudinal position of the contour lines of the 17.5℃ SST and the 0.25 mg m^(-3) Chl-a concentration. Our findings suggest the convergent oceanographic features(fronts) play significant roles in regulating the distribution and abundance of the western stock of the winter-spring cohort of O. bartramii, which can help people to improve their ability to discover the O. bartramii fishing grounds with higher productivity.
文摘The weakly nonlinear regime of single mode ablative Rayleigh-Taylor instability is studied, with consideration of preheat effect and the width of the ablation front. The Rayleigh-Taylor linear growth rate agrees well with the direct numerical simulation. For the density perturbation, the amplitude distribution of the fundamental mode has one peak value whereas those of the second and third harmonics have two and three peak values, respectively. Harmonics generation versus wave number is also given and it is close to the result of direct numerical simulation.
基金The National High Technology Research and Development Program ("863" Program) of China under contract Nos 2008AA121701 and 2007AA092201the National Natural Science Foundation of China under contract No.41006013
文摘Fronts, baroclinic transport, and mesoscale variability of the Antarctic Circumpolar Current (ACC) along 115°E are examined on the basis of CTD data from two hydrographic cruises occupied in 1995 as a part of the World Ocean Circulation Experiment (WOCE cruise I9S) and in 2004 as a part of CLIVAR/CO2 repeat hydrography program. The integrated baroclinic transport across I9S section is (97.2×106±2.2×106) m3/s relative to the deepest common level (DCL). The net transport at the north end of I9S, determined by the south Australian circulation system, is about 16.5× 106 m3/s westward. Relying on a consistent set of water mass criteria and transport maxima, the ACC baroclinic transport, (117×106±6.7×106) m3/s to the east, is carried along three fronts: the Subantarctic Front (SAF) at a mean latitude of 44°-49°S carries (50.6×106=t=13.4×106) m3/s; the Polar Front (PF), with the northern branch (PF-N) at 50.5°S and the southern branch (PF- S) at 58°S, carries (51.3×106±8.7×106) m3/s; finally, the southern ACC front (SACCF) and the southern boundary of the ACC (SB) consist of three cores between 59°S and 65°S that combined carry (15.2× 106±1.8× 106) m3/s. Mesoscale eddy features are identifiable in the CTD sections and tracked in concurrent maps of altimetric sea level anomalies (SLA) between 44°-48°S and 53°-57°S. Because of the remarkable mesoseale eddy features within the SAF observed in both the tracks of the cruises, the eastward transport of the SAF occurs at two latitude bands separating by 1°. Both the CTD and the altimetric data suggest that the mesoscale variability is concentrated around the Antarctic Polar Frontal Zone (APFZ) and causes the ACC fronts to merge, diverge, and to fluctuate in intensity and position along their paths.
基金The Louisiana Board of Regents EPSCoR(pFund)the Louisiana Board of Regents Traditional Enhancement Program under contract No.LEQSF(2016-17)-ENH-TR-05+1 种基金the North Pacific Research Board under contract No.1229the Louisiana Department of Wildlife and Fisheries under contract No.699775/514-100210
文摘The generation of high-resolution data is increasingly important in understanding the complexities of coastal ocean and developing sound management strategies, especially in view of the long-term impact of severe weather systems. The impact of severe weather systems, when integrated over time, can be significant when compared with tidal oscillations. This paper presents a study of water transport out of Vermilion Bay in response to a short, intense event associated with a passing atmospheric cold front, and reports the application of an Acoustic Doppler Current Profiler (ADCP) mounted on an Automated Surface Craft (ASC), known as the auto-boat or unmanned boat, developed in our lab at the Louisiana State University, to generate high resolution data accurately at a fraction of the cost of a manned boat. In our study, we used a manned boat and an unmanned boat, each for over 24 h to cover an entire diurnal tidal cycle, to measure flow velocity profiles to calculate the total transport. A stationary ADCP was deployed in the Southwest Pass of the Vermilion Bay from May 2009 to April 2012, providing data almost continuously (with only one major gap), with a 717-day record of water transport between the northern Gulf of Mexico and Vermilion Bay, and demonstrates the importance of the pass in water transport.
基金the National Key Programme for Developing Basic Sciences"!G199804901-lthe National Natural Science Foundation of China" Re
文摘The baroclinic nonlinear stability of fronts in the ocean on a sloping continental shelf is studied, the model equations, called the frontal geostrophic model, developed by Cushman—Roisin et al.(1992) for describing the dynamics of surface density fronts in the ocean are developed and the two—layer frontal geostrophic model for fronts on a sloping continental shelf is first obtained. The nonlinear stability criteria for the fronts on a sloping bottom are obtained by using Arnol’d (1965, 1969) variational principle and a prior estimate method. It is shown that our result is better than the former works. Key words Fronts in the ocean - Frontal geostrophic model - Nonlinear stability This Work was supported by “ the National Key Programme for Developing Basic Sciences” G199804901-1 and the National Natural Science Foundation of China “ Research Programme for Excellent State Key Laboratory” under Grant No. 49823002 and No. 49805002.