Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic cha...Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic changes and the influencing factors of the soil reinforcement effect of plant species after artificial vegetation restoration under different recovery periods.We selected dump areas of the Delni Copper Mine in Qinghai Province,China to study the relationship between the shear strength and the peak displacement of the root-soil composite on the slope during the recovery period,and the influence of the root traits and soil physical properties on the shear resistance characteristics of the root-soil composite via in situ direct shear tests.The results indicate that the shear strength and peak displacement of the rooted soil initially decreased and then increased with the increase of the recovery period.The shear strength of the rooted soil and the recovery period exhibited a quadratic function relationship.There is no significant function relationship between the peak displacement and the recovery period.Significant positive correlations(P<0.05)exists between the shear strength of the root-soil composite and the root biomass density,root volume density,and root area ratio,and they show significant linear correlations(P<0.05).There are no significant correlations(P>0.05)between the shear strength of the root-soil composite and the root length density,and the root volume ratio of the coarse roots to the fine roots.A significant negative linear correlation(P<0.05)exists between the peak displacement of the rooted soil and the coarse-grain content,but no significant correlations(P>0.05)with the root traits,other soil physical property indices(the moisture content and dry density of the soil),and slope gradient.The coarse-grain content is the main factor controlling the peak displacement of the rooted soil.展开更多
Semen coicis resistant starch is a type of starch which has undergone retrogradation. In this study,the structural characteristics of Semen coicis native starch,high-amylose maize starch,and heat-moisture treated Seme...Semen coicis resistant starch is a type of starch which has undergone retrogradation. In this study,the structural characteristics of Semen coicis native starch,high-amylose maize starch,and heat-moisture treated Semen coicis resistant starch were investigated. The field emission scanning electron microscopy results indicated that compared to Semen coicis native starch and high-amylose maize starch,the surface of heat-moisture treated Semen coicis resistant starch was rough and full of irregular layered strips. The Fourier transform infrared spectroscopy measurements indicated the degree of ordered structure values of Semen coicis native starch,high-amylose maize starch,and heat-moisture treated Semen coicis resistant starch are 1.355,1.372,and 1.410,respectively,and the degree of double helix values is 1.931,1.942,and 2.027,respectively,indicating that the degree of ordered structure and double helix structure of heat-moisture treated Semen coicis resistant starch is both higher than those of Semen coicis native starch and high-amylose maize starch. ^(13) C nuclear magnetic resonance spectroscopy showed that Semen coicis native starch and high-amylose maize starch exhibited A-type crystal structures,while heat-moisture treated Semen coicis resistant starch displayed B-type crystal structures. The relative crystallinity of Semen coicis native starch,high-amylose maize starch,and heat-moisture treated Semen coicis resistant starch is 76.41,85.36,and 87.25,respectively,and the percentages of amorphous region are 5.78,4.72,and 4.39,respectively. Additionally,heat-moisture treated Semen coicis resistant starch could increase the proliferation of Bifidobacterium bifidum more than Semen coicis native starch or high-amylose maize starch. Bifidobacterium bifidum displayed a higher tolerance under simulated gastrointestinal tract conditions such as low p H,bile acid,pepsin,and trypsin in heat-moisture treated Semen coicis resistant starch medium than in Semen coicis native starch or high-amylose maize starch media.展开更多
Background:Tuberculosis remains a major public-health problem in the world, despite several efforts to improve case identification and treatment. Particularly multidrug-resistant tuberculosis is becoming a major threa...Background:Tuberculosis remains a major public-health problem in the world, despite several efforts to improve case identification and treatment. Particularly multidrug-resistant tuberculosis is becoming a major threat to tuberculosis control programs in Ethiopia which seriously threatens the control and prevention efforts and is associated with both high death rates and treatment costs. Methods: A case-control study was conducted to assess risk factors and characteristics of MDR-TB cases at ALERT Hospital, Addis Ababa, Ethiopia, where cases were 167 MDR-TB patients, while controls were newly diagnosed and bacteriologically confirmed pulmonary TB cases of similar number, who were matched by sex and age of 5-years interval. Results: The socio-demographic characteristics of the participants indicated that majority (53.3%) were males and 46.7% females;a little over half of cases (55.1%) were in the age group 26 - 45 years, whereas 46.7% of controls were in this age group. According to the multivariable logistic regression analysis, previous history of hospital admission was the only factor that was identified as predictor which increased risk to develop MDR-TB by almost twenty times (AOR = 19.5;95% CI: 9.17 - 41.62) and P-value of <0.05. All other studied factor such as being unemployed, family size, having member of household member with TB, and history of visiting hospital in past 12 months etc., didn’t show any statistically significant association. Conclusion: The study identified previous history of hospital admission as independent predictors for the occurrence of MDR-TB, while other studied variables didn’t show any strong association. The findings added to the pool of knowledge emphasizing the need for instituting strong infection control practice at health care facilities to prevent nosocomial transmission of MDR-TB.展开更多
Isolates of X.oryzae pv.oryzae(X.o.o.)re-sistant to Saikuzuo[N,N-methylene-di(2-amino-5-sulfurhydrogen-1,3,4-thioazole)]were selected from laboratory and field for thestudy of their characteristics.The laboratoryresis...Isolates of X.oryzae pv.oryzae(X.o.o.)re-sistant to Saikuzuo[N,N-methylene-di(2-amino-5-sulfurhydrogen-1,3,4-thioazole)]were selected from laboratory and field for thestudy of their characteristics.The laboratoryresistant mutants had no pathogenicity on rice,and the field resistant isolates did not show re-sistance to Saikuzuo in vitro.These strainsshowed cross resistance to homologue bacteri-cide Dikuzuo(TH-128),but seems no resis-展开更多
There exist different response characteristics in the resistivity measurements of dual laterolog (DLL) and logging while drilling (LWD) electromagnetic wave propagation logging in highly deviated and horizontal we...There exist different response characteristics in the resistivity measurements of dual laterolog (DLL) and logging while drilling (LWD) electromagnetic wave propagation logging in highly deviated and horizontal wells due to the difference in their measuring principles. In this study, we first use the integral equation method simulated the response characteristics of LWD resistivity and use the three dimensional finite element method (3D-FEM) simulated the response characteristics of DLL resistivity in horizontal wells, and then analyzed the response differences between the DLL and LWD resistivity. The comparative analysis indicated that the response differences may be caused by different factors such as differences in the angle of instrument inclination, anisotropy, formation interface, and mud intrusion. In the interface, the curves of the LWD resistivity become sharp with increases in the deviation while those of the DLL resistivity gradually become smooth. Both curves are affected by the anisotropy although the effect on DLL resistivity is lower than the LWD resistivity. These differences aid in providing a reasonable explanation in the horizontal well. However, this can also simultaneously lead to false results. At the end of the study, we explain the effects of the differences in the interpretation of the horizontal well based on the results and actual data analysis.展开更多
The purpose of this investigation is to study the clinical characteristics of infections by community-acquired methicillin-resistant Staphylococcus aureus (MRSA) and the condition of antibiotics resistance of the clin...The purpose of this investigation is to study the clinical characteristics of infections by community-acquired methicillin-resistant Staphylococcus aureus (MRSA) and the condition of antibiotics resistance of the clinical isolates in order to guide for the rational use of antibiotics. With the clinical isolates from cases of hospital-acquired MRSA at the same period as controls, the clinical characteristics of infections by community-acquired MRSA in Hangzhou area and the pattern of non-β-lactamase antibiotics resistance were determined in this study. It was found that the average age of patients with community-acquired MRSA infections was 30.89±13.3, in comparison with those of the hospital-acquired patients of 56.0±11.8, appearing to be younger than those of the latter, and the former showing no any basic illness. Both of the former and the latter were sensitive to vancomycin (100% vs 100%), and they had the same degrees of sensitivity to rifampicin, fosfomycin, and STM/TMP (86.8% vs 88.1%, P >0.05; 81.6% vs 82.9%, P >0.05; and 52.6% vs 61.9%, P >0.05, respectively). The former was more sensitive to netimycin, clindamycin, erythromycin and minocycline than those of the latter (73.7% vs 50.5%, P <0.01; 60.5% vs 45.7%, P <0.05; 28.9% vs 11.4%, P <0.01; and 81.6% vs 58.6%, P <0.01 respectively). Meanwhile, the incidence of multi-resistant strain of isolates in the former was significantly lower than that of the latter (31.6% vs 81.0%, P <0.01). In conclusion, it appears that the strains of clinical isolates isolated from patients with the community-acquired MRSA infections show different clinical characteristics and antimicrobial susceptibility in comparison with those of the hospital-acquired cases of infection, and this necessitates an alteration in the chemotherapy of infections suspected to be caused by community-acquired MRSA.展开更多
[Objective] The aim was to separate chromium-resistant microorganism from soil contaminated by chromium.[Method] Separation and purification technique was used as follows:different concentrations of Cr^6+ were added...[Objective] The aim was to separate chromium-resistant microorganism from soil contaminated by chromium.[Method] Separation and purification technique was used as follows:different concentrations of Cr^6+ were added into medium,and chromium-resistant fungi were screened after separations and domestications.The selected fungi were under preliminary identification according to its morphological and colony characteristics.Then,related biological characteristics were studied,including measurement of growth curve,growing effects by temperature,pH value and osmotic pressure.[Result] The Cr(VI) with concentration of 1 000 mg/L was separated and selected from soils in ten different places contaminated seriously by heavy metal in adjacent region of Yulin City.Considering its morphological and colony characteristics,it was preliminarily identified as saccharomycetes,which can well grow within 15-37 ℃,and whose most suitable temperature was 28℃.Bacterial strain can grow well with pH of 4-10,and the optimum pH was 7.2;besides,it can grow well with NaCl concentration of 0.5%-5.0%.Through the experiment,the bacteria was found with resistance not only to chromium,but also to heavy metals such as Pb+Cu,Cu+Fe,Pb+Fe,and Pb+Cu+Fe.[Conclusion] The fungi selected from the experiment were of good adaptability to natural environment,and it also had resistance to other heavy metals.展开更多
Rational determination and reduction of local energy loss of oil flow at pipe junctions are of important significance to improve hydraulic pipeline's work efficiency, especially for complex hydraulic pipeline connect...Rational determination and reduction of local energy loss of oil flow at pipe junctions are of important significance to improve hydraulic pipeline's work efficiency, especially for complex hydraulic pipeline connected by isodiametric T-type ducts with sharp comers to get combined and divided flow. From this point of view, the formulae of resistance loss for combined flow and divided flow through isodiametric T-type duct with sharp comers as well as the correlations of resistance loss coefficients in the branches of the duct are derived using energy method. On this basis, resistance characteristics of hydraulic oil in the duct are obtained by numerical simulation of different flow modes, which are commonly applied in hydraulic pipelines, using computational fluid dynamics (CFD) method, and the reasons for the resistance loss are analyzed based on the pressure change mechanism in the flow field. A part of simulation results was validated with the reference data. The research shows that for combined flows the resistance loss of symmetrical is lower than that of unsymmetrical to obtain low speed in common branch, but to gain high speed is quite the contrary, for divided flows, the symmetrical is always a reasonable choice to reduce resistance loss. These conclusions can be applied to optimize the design of hydraulic pipeline.展开更多
In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cab...In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cables with high strength,high elongation,and high energy-absorbing capacity.Therefore,a constant resistance energy-absorbing(CREA)material is developed.In this study,the dynamic characteristics of the new material are obtained via the drop hammer tests and the Split Hopkinson Pressure Bar(SHPB)tests of the new material and two common bolt(CB)materials widely used in the field.The test results of drop hammer test and SHPB test show that the percentage elongation of CREA material is more than 2.64 and 3.22 times those of the CB material,and the total impact energy acting on CREA material is more than 18.50 and 21.84 times,respectively,indicating that the new material has high elongation and high energy-absorbing capacity.Subsequently,the CREA bolts and cables using the new material are developed,which are applied in roadways with high stress and strong dynamic disturbance.The field monitoring results show that CREA bolts and cables can effectively control the surrounding rock deformation and ensure engineering safety.展开更多
Resistance in iron ore undergoes a sharp change of up to several orders of magnitude when the sintered solid phase changes to liquid phase.In view of the insufficiency of existing assimilation detection methods,a timi...Resistance in iron ore undergoes a sharp change of up to several orders of magnitude when the sintered solid phase changes to liquid phase.In view of the insufficiency of existing assimilation detection methods,a timing-of-assimilation reaction is proposed,which was judged by continuously detecting the changes in resistance at the reaction interface.Effects of pole position and additional amounts of iron ore on assimilation reaction timing were investigated.The results showed that the suitable depth of pole groove was about 2 mm,and there was no obvious impact when the distance of the poles changed from 4 to 6 mm,or the amount of iron ore changed from 0.4 to 0.6 g.The temperature of sudden change of resistance in the temperature-resistant image was considered to be the lowest assimilation temperature of iron ore.The accuracy of this resistance method was clarified by X-ray diffraction,optical microscope,and scanning electron microscope/energy dispersive spectrometer(SEM/EDS)analyses.展开更多
The stress,strain as well as resistivity of coal during uniaxial compression process were tested based on self-built real-time testing system of loaded coal resistivity.Furthermore,the coal resistivity regularity and ...The stress,strain as well as resistivity of coal during uniaxial compression process were tested based on self-built real-time testing system of loaded coal resistivity.Furthermore,the coal resistivity regularity and mechanism were analyzed at different stages of complete stress-strain process,which includes the two kinds of coal body with typical conductive characteristics.The results indicate that coal resistivity with different conductive characteristics has different change rules in complete stress-strain process.It is mainly represented at the densification and flexibility phases before dilatation occurs.The variation of resistivity can be divided into two kinds,named down and up.Dilatation of coal samples occurred between 66%σ_(max) and 87%σ_(max).Because of dilatation,coal resistivity involves sudden change.The overall representation is shifting from reducing into improving or from slow improving into accelerated improving.Thus,coal resistivity always shows an increasing tendency at the plastic stage.After peak stress,coal body enters into failure stage.The expanding and communicating of macro fracture causes further improvement of coal resistivity.The maximum value of resistivity rangeability named λ reached 3.49.Through making real-time monitoring on coal resistivity,variation rules of resistivity can be deemed as precursory information so as to reflect the dilatation and sudden change before coal body reaches buckling failure,which can provide a new technological means for forecasting the dynamic disaster of coal petrography.展开更多
The contact resistance between the armature and rails is an important indicator of the contact characteristics in electromagnetic launches.As the contact resistance depends not only on the contact state but also on th...The contact resistance between the armature and rails is an important indicator of the contact characteristics in electromagnetic launches.As the contact resistance depends not only on the contact state but also on the contact stress and temperature,there are some limitations in analyzing the contact characteristics using only the contact resistance.In this paper,the contact characteristics of the augmented railgun are analyzed by the combination of contact resistance and sliding friction coefficient.Firstly,the theoretical calculation model of the contact resistance and friction coefficient of the augmented electromagnetic railgun is established.Then the contact resistance and friction coefficient are calculated by the measured values of the muzzle voltage,rail current and armature displacement.Finally,the contact characteristics are analyzed according to the features of the waveforms of the contact resistance and the friction coefficient,and the analysis conclusions are verified by experimental rail images.The results showed that:the aluminum melt film gradually formed on the contact surface reduces the contact resistance and the friction coefficient;the wear and erosion of the armature cause deterioration of the contact state;after the transition,the reliability of the sliding contact between the armature and rails decreases,resulting in an increase in contact resistance.展开更多
The equivalent simplification of large wind farms is essential for evaluating the safety of power systems.However,sub-synchronous oscillations can significantly affect the stability of power systems.Although detailed ...The equivalent simplification of large wind farms is essential for evaluating the safety of power systems.However,sub-synchronous oscillations can significantly affect the stability of power systems.Although detailed mathematical models of wind farms can help accurately analyze the oscillation mechanism,the solution process is complicated and may lead to problems such as the“dimensional disaster.”Therefore,this paper proposes a sub-synchronous frequency domain-equivalent modeling method for wind farms based on the nature of the equivalent resistance of the rotor,in order to analyze sub-synchronous oscillations accurately.To this end,Matlab/Simulink is used to simulate a detailed model,a single-unit model,and an equivalent model,considering a wind farm as an example.A simulation analysis is then performed under the sub-synchronous frequency to prove that the model is effective and that the wind farm equivalence model method is valid.展开更多
The key to high-yielding peanut cultivation is the optimization of agricultural production practices.Regulating single-seed precise sowing(SSPS)density and paclobutrazol(Pbz)application concentration are effective pra...The key to high-yielding peanut cultivation is the optimization of agricultural production practices.Regulating single-seed precise sowing(SSPS)density and paclobutrazol(Pbz)application concentration are effective practices that increase peanut yield by improving plant architecture,lodging resistance,and photosynthetic characteristics.Therefore,we conducted a two-factor field optimization experiment for the sowing density(D1:1.95×10^(5)plants ha^(-1),D52:2.40×10plants ha^(-1),D3:2.85×10^(5)plants ha^(-1),and D4:3.30×10^(5)plants ha^(-1))and Pbzapplication concentration(P0:0 mg L^(-1)and P1:100 mg L^(-1)).The objective was to optimize agricultural production practices and provide a theoretical basis for highyielding peanut cultivation by evaluating the effects of sowing density and Pbzapplication on plant architecture,lodging resistance,photosynthetic characteristics,and yield.The results showed that at the same Pbzapplication concentration,increasing sowing density increased lodging percentage and reduced leaf photosynthetic capacity.At the same sowing density,Pbzapplication reduced lodging percentage by decreasing plant height(PH),improving lignin biosynthesis-related enzyme activities,and enhancing stem puncture strength(SPS)and breaking strength(SBS).The paclobutrazol-induced alterations in plant architecture and lodging resistance improved light transmission at the middle and bottom leaf strata,resulting in the increase in relative chlorophyll content and net photosynthetic rate(Pn)of leaves.Furthermore,D3P1treatment had the highest peanut yield among all treatments.In summary,the production strategy combining the sowing density of 2.85×10^(5)plants ha^(-1)with the application of100 mg L^(-1)Pbzwas found to be the optimal agricultural production practice for giving full play to production potential and achieving higher peanut yield.展开更多
Computational fluid dynamics(CFD)was used in conjunction with BP neural network to study theflow resistance characteristic of the combination-channel inside hydraulic manifold block(HMB).The in-put parameters of the c...Computational fluid dynamics(CFD)was used in conjunction with BP neural network to study theflow resistance characteristic of the combination-channel inside hydraulic manifold block(HMB).The in-put parameters of the combination-channel model were confirmed to have effect on the pressure-drop bythe numerical method,and a BP neural network model was accordingly constructed to predict the channelpressure-drops.The flow resistance characteristic curves of various channels were achieved,and a perfor-mance parameter was given to evaluate the through-flow characteristic of the channel according to thecurves.The predictions are' in agreement with the numerical computation,indicating that the method canbe utilized to accurately determine the flow characteristic of the combination channel with high efficiency.展开更多
A mathematical model is established on the basis of the physical characteristic of the negative resistance arc when a low current of 0—50 A is applied in pulsed TIG welding. The simulation model converted from the ma...A mathematical model is established on the basis of the physical characteristic of the negative resistance arc when a low current of 0—50 A is applied in pulsed TIG welding. The simulation model converted from the mathematical model is run in MATLAB environment, and the discussion is focused on the way the peak current ranging from 29 A to 50 A and the time constant of arc in the span of 0.003—0.006 s influence the simulating results and the dynamic characteristic. The simulating data are close to that of welding experiments and correspond to the theoretical conclusion.展开更多
Triggering scheme is a significant factor that may influence the process of vacuum arc initiation. In this work, the characteristics of resistance triggering of a pulsed vacuum arc ion source are investigated and comp...Triggering scheme is a significant factor that may influence the process of vacuum arc initiation. In this work, the characteristics of resistance triggering of a pulsed vacuum arc ion source are investigated and compared with the independent pulse generator triggering. The results show that although the resistance triggering method is capable of triggering a vacuum arc ion source by properly choosing the resistance and electric parameters, it inevitably increases the rise time of the arc current. A high speed multiframe camera is used to reveal the transition process o~ arc initiation during one shot. From the images it is conjectured that the lower voltage between the cathode and the anode may be the reason that leads to the lower transition speed of discharge at the moment of arc initiation.展开更多
The resistance characteristics of a continuously-graded distributed Bragg reflector(DBR) in a 980-nm verticalcavity surface-emitting laser(VCSEL) are modeled in detail.The junction resistances between the layers o...The resistance characteristics of a continuously-graded distributed Bragg reflector(DBR) in a 980-nm verticalcavity surface-emitting laser(VCSEL) are modeled in detail.The junction resistances between the layers of both the p-and n-DBR mirrors are analysed by combining the thermionic emission model and the finite difference method.In the meantime,the intrinsic resistance of the DBR material system is calculated to make a comparison with the junction resistance.The minimal values of series resistances of the graded p-and n-type DBR mirrors and the lateral temperature-dependent resistance variation are calculated and discussed.The result indicates the potential to optimize the design of the DBR reflectors of the 980-nm VCSELs.展开更多
Effect of working temperature on the resistance characteristic including the permeability coefficient and the pressure drop evolution of a pleated stainless steel woven filter with a nominal pore size of 0.5 μm has b...Effect of working temperature on the resistance characteristic including the permeability coefficient and the pressure drop evolution of a pleated stainless steel woven filter with a nominal pore size of 0.5 μm has been studied. The permeability coefficient was obtained based on the pressure drop data and the Darcy's law. In three filtration experiments, pure carbon dioxide at 283 K, nitrogen at 85 K and liquid helium at 18 K are adopted, respectively. It is found that the permeability coefficient decreases at the working temperature due to the cold shrink of the filter element at cryogenic temperature. Then, two kinds of feed slurries, mixture of liquid nitrogen and solid carbon dioxide at 85 K, and mixture of liquid helium and solid nitrogen at 18 K, flow into the filter cell. The solid particles are deposited on the filter surface to form a filter cake and the purified liquid flows through the filter. It is found that the pressure drop evolution shows the same trend on these two temperatures, which can be divided into three stages with high filtration efficiency, indicating the feasibility of the filter for cryogenic application. However, variant cake resistances are obtained, which is resulted from the different interactions between solid particles in the feed slurry at lower working temperature.展开更多
基金supported by the Project of Qinghai Science&Technology Department(Grant No.2021-ZJ-956Q).
文摘Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic changes and the influencing factors of the soil reinforcement effect of plant species after artificial vegetation restoration under different recovery periods.We selected dump areas of the Delni Copper Mine in Qinghai Province,China to study the relationship between the shear strength and the peak displacement of the root-soil composite on the slope during the recovery period,and the influence of the root traits and soil physical properties on the shear resistance characteristics of the root-soil composite via in situ direct shear tests.The results indicate that the shear strength and peak displacement of the rooted soil initially decreased and then increased with the increase of the recovery period.The shear strength of the rooted soil and the recovery period exhibited a quadratic function relationship.There is no significant function relationship between the peak displacement and the recovery period.Significant positive correlations(P<0.05)exists between the shear strength of the root-soil composite and the root biomass density,root volume density,and root area ratio,and they show significant linear correlations(P<0.05).There are no significant correlations(P>0.05)between the shear strength of the root-soil composite and the root length density,and the root volume ratio of the coarse roots to the fine roots.A significant negative linear correlation(P<0.05)exists between the peak displacement of the rooted soil and the coarse-grain content,but no significant correlations(P>0.05)with the root traits,other soil physical property indices(the moisture content and dry density of the soil),and slope gradient.The coarse-grain content is the main factor controlling the peak displacement of the rooted soil.
基金Supported by the National Natural Science Fund of China(No.31301441)the Cooperation in Production,Study and Research of Science and Technology Major Projects of Fujian Province(2012N5004)+2 种基金the Natural Science Foundation of Fujian Province(2012J01081)the Scientific and Technological Innovation Team Support Plan of Institution of Higher Learning in Fujian Province([2012]03)the Scientific and Technological Innovation Team Support Plan of Fujian Agriculture and Forestry University(cxtd12009)
文摘Semen coicis resistant starch is a type of starch which has undergone retrogradation. In this study,the structural characteristics of Semen coicis native starch,high-amylose maize starch,and heat-moisture treated Semen coicis resistant starch were investigated. The field emission scanning electron microscopy results indicated that compared to Semen coicis native starch and high-amylose maize starch,the surface of heat-moisture treated Semen coicis resistant starch was rough and full of irregular layered strips. The Fourier transform infrared spectroscopy measurements indicated the degree of ordered structure values of Semen coicis native starch,high-amylose maize starch,and heat-moisture treated Semen coicis resistant starch are 1.355,1.372,and 1.410,respectively,and the degree of double helix values is 1.931,1.942,and 2.027,respectively,indicating that the degree of ordered structure and double helix structure of heat-moisture treated Semen coicis resistant starch is both higher than those of Semen coicis native starch and high-amylose maize starch. ^(13) C nuclear magnetic resonance spectroscopy showed that Semen coicis native starch and high-amylose maize starch exhibited A-type crystal structures,while heat-moisture treated Semen coicis resistant starch displayed B-type crystal structures. The relative crystallinity of Semen coicis native starch,high-amylose maize starch,and heat-moisture treated Semen coicis resistant starch is 76.41,85.36,and 87.25,respectively,and the percentages of amorphous region are 5.78,4.72,and 4.39,respectively. Additionally,heat-moisture treated Semen coicis resistant starch could increase the proliferation of Bifidobacterium bifidum more than Semen coicis native starch or high-amylose maize starch. Bifidobacterium bifidum displayed a higher tolerance under simulated gastrointestinal tract conditions such as low p H,bile acid,pepsin,and trypsin in heat-moisture treated Semen coicis resistant starch medium than in Semen coicis native starch or high-amylose maize starch media.
文摘Background:Tuberculosis remains a major public-health problem in the world, despite several efforts to improve case identification and treatment. Particularly multidrug-resistant tuberculosis is becoming a major threat to tuberculosis control programs in Ethiopia which seriously threatens the control and prevention efforts and is associated with both high death rates and treatment costs. Methods: A case-control study was conducted to assess risk factors and characteristics of MDR-TB cases at ALERT Hospital, Addis Ababa, Ethiopia, where cases were 167 MDR-TB patients, while controls were newly diagnosed and bacteriologically confirmed pulmonary TB cases of similar number, who were matched by sex and age of 5-years interval. Results: The socio-demographic characteristics of the participants indicated that majority (53.3%) were males and 46.7% females;a little over half of cases (55.1%) were in the age group 26 - 45 years, whereas 46.7% of controls were in this age group. According to the multivariable logistic regression analysis, previous history of hospital admission was the only factor that was identified as predictor which increased risk to develop MDR-TB by almost twenty times (AOR = 19.5;95% CI: 9.17 - 41.62) and P-value of <0.05. All other studied factor such as being unemployed, family size, having member of household member with TB, and history of visiting hospital in past 12 months etc., didn’t show any statistically significant association. Conclusion: The study identified previous history of hospital admission as independent predictors for the occurrence of MDR-TB, while other studied variables didn’t show any strong association. The findings added to the pool of knowledge emphasizing the need for instituting strong infection control practice at health care facilities to prevent nosocomial transmission of MDR-TB.
文摘Isolates of X.oryzae pv.oryzae(X.o.o.)re-sistant to Saikuzuo[N,N-methylene-di(2-amino-5-sulfurhydrogen-1,3,4-thioazole)]were selected from laboratory and field for thestudy of their characteristics.The laboratoryresistant mutants had no pathogenicity on rice,and the field resistant isolates did not show re-sistance to Saikuzuo in vitro.These strainsshowed cross resistance to homologue bacteri-cide Dikuzuo(TH-128),but seems no resis-
基金supported by the National Science and Technology Major Project of China(Nos.2016ZX05014-002-001,2016ZX05002-005-001,and 2017ZX05005-005-005)
文摘There exist different response characteristics in the resistivity measurements of dual laterolog (DLL) and logging while drilling (LWD) electromagnetic wave propagation logging in highly deviated and horizontal wells due to the difference in their measuring principles. In this study, we first use the integral equation method simulated the response characteristics of LWD resistivity and use the three dimensional finite element method (3D-FEM) simulated the response characteristics of DLL resistivity in horizontal wells, and then analyzed the response differences between the DLL and LWD resistivity. The comparative analysis indicated that the response differences may be caused by different factors such as differences in the angle of instrument inclination, anisotropy, formation interface, and mud intrusion. In the interface, the curves of the LWD resistivity become sharp with increases in the deviation while those of the DLL resistivity gradually become smooth. Both curves are affected by the anisotropy although the effect on DLL resistivity is lower than the LWD resistivity. These differences aid in providing a reasonable explanation in the horizontal well. However, this can also simultaneously lead to false results. At the end of the study, we explain the effects of the differences in the interpretation of the horizontal well based on the results and actual data analysis.
文摘The purpose of this investigation is to study the clinical characteristics of infections by community-acquired methicillin-resistant Staphylococcus aureus (MRSA) and the condition of antibiotics resistance of the clinical isolates in order to guide for the rational use of antibiotics. With the clinical isolates from cases of hospital-acquired MRSA at the same period as controls, the clinical characteristics of infections by community-acquired MRSA in Hangzhou area and the pattern of non-β-lactamase antibiotics resistance were determined in this study. It was found that the average age of patients with community-acquired MRSA infections was 30.89±13.3, in comparison with those of the hospital-acquired patients of 56.0±11.8, appearing to be younger than those of the latter, and the former showing no any basic illness. Both of the former and the latter were sensitive to vancomycin (100% vs 100%), and they had the same degrees of sensitivity to rifampicin, fosfomycin, and STM/TMP (86.8% vs 88.1%, P >0.05; 81.6% vs 82.9%, P >0.05; and 52.6% vs 61.9%, P >0.05, respectively). The former was more sensitive to netimycin, clindamycin, erythromycin and minocycline than those of the latter (73.7% vs 50.5%, P <0.01; 60.5% vs 45.7%, P <0.05; 28.9% vs 11.4%, P <0.01; and 81.6% vs 58.6%, P <0.01 respectively). Meanwhile, the incidence of multi-resistant strain of isolates in the former was significantly lower than that of the latter (31.6% vs 81.0%, P <0.01). In conclusion, it appears that the strains of clinical isolates isolated from patients with the community-acquired MRSA infections show different clinical characteristics and antimicrobial susceptibility in comparison with those of the hospital-acquired cases of infection, and this necessitates an alteration in the chemotherapy of infections suspected to be caused by community-acquired MRSA.
基金Supported by Chinese National Natural Science Foundation(30960008 )Educational Commission of Guangxi Province(200810LX393)+2 种基金Starting Project of Yulin Normal College,Guangxi ProvinceSpecialized Research Project of Yulin Normal College,Guangxi Province (2011YJZX01)Project Supported by the Science Foundation for Young Scientists of Guangxi Yulin Normal College (2010YJQN24)~~
文摘[Objective] The aim was to separate chromium-resistant microorganism from soil contaminated by chromium.[Method] Separation and purification technique was used as follows:different concentrations of Cr^6+ were added into medium,and chromium-resistant fungi were screened after separations and domestications.The selected fungi were under preliminary identification according to its morphological and colony characteristics.Then,related biological characteristics were studied,including measurement of growth curve,growing effects by temperature,pH value and osmotic pressure.[Result] The Cr(VI) with concentration of 1 000 mg/L was separated and selected from soils in ten different places contaminated seriously by heavy metal in adjacent region of Yulin City.Considering its morphological and colony characteristics,it was preliminarily identified as saccharomycetes,which can well grow within 15-37 ℃,and whose most suitable temperature was 28℃.Bacterial strain can grow well with pH of 4-10,and the optimum pH was 7.2;besides,it can grow well with NaCl concentration of 0.5%-5.0%.Through the experiment,the bacteria was found with resistance not only to chromium,but also to heavy metals such as Pb+Cu,Cu+Fe,Pb+Fe,and Pb+Cu+Fe.[Conclusion] The fungi selected from the experiment were of good adaptability to natural environment,and it also had resistance to other heavy metals.
基金supported by Hebei Provincial Natural Science Foundation of China (Grant No. 503292)
文摘Rational determination and reduction of local energy loss of oil flow at pipe junctions are of important significance to improve hydraulic pipeline's work efficiency, especially for complex hydraulic pipeline connected by isodiametric T-type ducts with sharp comers to get combined and divided flow. From this point of view, the formulae of resistance loss for combined flow and divided flow through isodiametric T-type duct with sharp comers as well as the correlations of resistance loss coefficients in the branches of the duct are derived using energy method. On this basis, resistance characteristics of hydraulic oil in the duct are obtained by numerical simulation of different flow modes, which are commonly applied in hydraulic pipelines, using computational fluid dynamics (CFD) method, and the reasons for the resistance loss are analyzed based on the pressure change mechanism in the flow field. A part of simulation results was validated with the reference data. The research shows that for combined flows the resistance loss of symmetrical is lower than that of unsymmetrical to obtain low speed in common branch, but to gain high speed is quite the contrary, for divided flows, the symmetrical is always a reasonable choice to reduce resistance loss. These conclusions can be applied to optimize the design of hydraulic pipeline.
基金This work was supported by the National Natural Science Foundation of China(Nos.41941018,52074164,and 42077267);the Natural Science Foundation of Shandong Province,China(Nos.2019SDZY04 and ZR2020JQ23)the Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program,China(No.2019KJG013).
文摘In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cables with high strength,high elongation,and high energy-absorbing capacity.Therefore,a constant resistance energy-absorbing(CREA)material is developed.In this study,the dynamic characteristics of the new material are obtained via the drop hammer tests and the Split Hopkinson Pressure Bar(SHPB)tests of the new material and two common bolt(CB)materials widely used in the field.The test results of drop hammer test and SHPB test show that the percentage elongation of CREA material is more than 2.64 and 3.22 times those of the CB material,and the total impact energy acting on CREA material is more than 18.50 and 21.84 times,respectively,indicating that the new material has high elongation and high energy-absorbing capacity.Subsequently,the CREA bolts and cables using the new material are developed,which are applied in roadways with high stress and strong dynamic disturbance.The field monitoring results show that CREA bolts and cables can effectively control the surrounding rock deformation and ensure engineering safety.
基金financially supported by the China Postdoctoral Science Foundation (No. 2019M662130)the National Natural Science Foundation of China (No. 51674002)
文摘Resistance in iron ore undergoes a sharp change of up to several orders of magnitude when the sintered solid phase changes to liquid phase.In view of the insufficiency of existing assimilation detection methods,a timing-of-assimilation reaction is proposed,which was judged by continuously detecting the changes in resistance at the reaction interface.Effects of pole position and additional amounts of iron ore on assimilation reaction timing were investigated.The results showed that the suitable depth of pole groove was about 2 mm,and there was no obvious impact when the distance of the poles changed from 4 to 6 mm,or the amount of iron ore changed from 0.4 to 0.6 g.The temperature of sudden change of resistance in the temperature-resistant image was considered to be the lowest assimilation temperature of iron ore.The accuracy of this resistance method was clarified by X-ray diffraction,optical microscope,and scanning electron microscope/energy dispersive spectrometer(SEM/EDS)analyses.
基金supported by the Research Project of Chinese Ministry of Education of China(No.113031A)the Basic Scientific Research Business Expenses of Central University of China (Nos.3142015001 and 3142015020)the New Century Talent Supporting Project by Education Ministry of China(No. NCET-11-0837)
文摘The stress,strain as well as resistivity of coal during uniaxial compression process were tested based on self-built real-time testing system of loaded coal resistivity.Furthermore,the coal resistivity regularity and mechanism were analyzed at different stages of complete stress-strain process,which includes the two kinds of coal body with typical conductive characteristics.The results indicate that coal resistivity with different conductive characteristics has different change rules in complete stress-strain process.It is mainly represented at the densification and flexibility phases before dilatation occurs.The variation of resistivity can be divided into two kinds,named down and up.Dilatation of coal samples occurred between 66%σ_(max) and 87%σ_(max).Because of dilatation,coal resistivity involves sudden change.The overall representation is shifting from reducing into improving or from slow improving into accelerated improving.Thus,coal resistivity always shows an increasing tendency at the plastic stage.After peak stress,coal body enters into failure stage.The expanding and communicating of macro fracture causes further improvement of coal resistivity.The maximum value of resistivity rangeability named λ reached 3.49.Through making real-time monitoring on coal resistivity,variation rules of resistivity can be deemed as precursory information so as to reflect the dilatation and sudden change before coal body reaches buckling failure,which can provide a new technological means for forecasting the dynamic disaster of coal petrography.
文摘The contact resistance between the armature and rails is an important indicator of the contact characteristics in electromagnetic launches.As the contact resistance depends not only on the contact state but also on the contact stress and temperature,there are some limitations in analyzing the contact characteristics using only the contact resistance.In this paper,the contact characteristics of the augmented railgun are analyzed by the combination of contact resistance and sliding friction coefficient.Firstly,the theoretical calculation model of the contact resistance and friction coefficient of the augmented electromagnetic railgun is established.Then the contact resistance and friction coefficient are calculated by the measured values of the muzzle voltage,rail current and armature displacement.Finally,the contact characteristics are analyzed according to the features of the waveforms of the contact resistance and the friction coefficient,and the analysis conclusions are verified by experimental rail images.The results showed that:the aluminum melt film gradually formed on the contact surface reduces the contact resistance and the friction coefficient;the wear and erosion of the armature cause deterioration of the contact state;after the transition,the reliability of the sliding contact between the armature and rails decreases,resulting in an increase in contact resistance.
基金supported by the National Key R&D Program of China“Response-driven intelligent enhanced analysis and control for bulk power system stability”(No.2021YFB2400800)。
文摘The equivalent simplification of large wind farms is essential for evaluating the safety of power systems.However,sub-synchronous oscillations can significantly affect the stability of power systems.Although detailed mathematical models of wind farms can help accurately analyze the oscillation mechanism,the solution process is complicated and may lead to problems such as the“dimensional disaster.”Therefore,this paper proposes a sub-synchronous frequency domain-equivalent modeling method for wind farms based on the nature of the equivalent resistance of the rotor,in order to analyze sub-synchronous oscillations accurately.To this end,Matlab/Simulink is used to simulate a detailed model,a single-unit model,and an equivalent model,considering a wind farm as an example.A simulation analysis is then performed under the sub-synchronous frequency to prove that the model is effective and that the wind farm equivalence model method is valid.
基金supported by the National Key Research and Development Program of China(2020YFD1000902)the Shandong Key Research and Development Program(2018YFJH0601-3)+1 种基金the Major Agricultural Applied Technological Innovation Projects in Shandong Province(SD2019ZZ11)the Shandong Modern Agricultural Technology and Industry System(SDAIT-04-01)。
文摘The key to high-yielding peanut cultivation is the optimization of agricultural production practices.Regulating single-seed precise sowing(SSPS)density and paclobutrazol(Pbz)application concentration are effective practices that increase peanut yield by improving plant architecture,lodging resistance,and photosynthetic characteristics.Therefore,we conducted a two-factor field optimization experiment for the sowing density(D1:1.95×10^(5)plants ha^(-1),D52:2.40×10plants ha^(-1),D3:2.85×10^(5)plants ha^(-1),and D4:3.30×10^(5)plants ha^(-1))and Pbzapplication concentration(P0:0 mg L^(-1)and P1:100 mg L^(-1)).The objective was to optimize agricultural production practices and provide a theoretical basis for highyielding peanut cultivation by evaluating the effects of sowing density and Pbzapplication on plant architecture,lodging resistance,photosynthetic characteristics,and yield.The results showed that at the same Pbzapplication concentration,increasing sowing density increased lodging percentage and reduced leaf photosynthetic capacity.At the same sowing density,Pbzapplication reduced lodging percentage by decreasing plant height(PH),improving lignin biosynthesis-related enzyme activities,and enhancing stem puncture strength(SPS)and breaking strength(SBS).The paclobutrazol-induced alterations in plant architecture and lodging resistance improved light transmission at the middle and bottom leaf strata,resulting in the increase in relative chlorophyll content and net photosynthetic rate(Pn)of leaves.Furthermore,D3P1treatment had the highest peanut yield among all treatments.In summary,the production strategy combining the sowing density of 2.85×10^(5)plants ha^(-1)with the application of100 mg L^(-1)Pbzwas found to be the optimal agricultural production practice for giving full play to production potential and achieving higher peanut yield.
基金the National Natural Science Foundation of China(No.50375023)
文摘Computational fluid dynamics(CFD)was used in conjunction with BP neural network to study theflow resistance characteristic of the combination-channel inside hydraulic manifold block(HMB).The in-put parameters of the combination-channel model were confirmed to have effect on the pressure-drop bythe numerical method,and a BP neural network model was accordingly constructed to predict the channelpressure-drops.The flow resistance characteristic curves of various channels were achieved,and a perfor-mance parameter was given to evaluate the through-flow characteristic of the channel according to thecurves.The predictions are' in agreement with the numerical computation,indicating that the method canbe utilized to accurately determine the flow characteristic of the combination channel with high efficiency.
基金National Natural Science Foundation of China (No 59975068) Natural Science Foundation of Tianjin (No993602911)
文摘A mathematical model is established on the basis of the physical characteristic of the negative resistance arc when a low current of 0—50 A is applied in pulsed TIG welding. The simulation model converted from the mathematical model is run in MATLAB environment, and the discussion is focused on the way the peak current ranging from 29 A to 50 A and the time constant of arc in the span of 0.003—0.006 s influence the simulating results and the dynamic characteristic. The simulating data are close to that of welding experiments and correspond to the theoretical conclusion.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11105130 and 11475156
文摘Triggering scheme is a significant factor that may influence the process of vacuum arc initiation. In this work, the characteristics of resistance triggering of a pulsed vacuum arc ion source are investigated and compared with the independent pulse generator triggering. The results show that although the resistance triggering method is capable of triggering a vacuum arc ion source by properly choosing the resistance and electric parameters, it inevitably increases the rise time of the arc current. A high speed multiframe camera is used to reveal the transition process o~ arc initiation during one shot. From the images it is conjectured that the lower voltage between the cathode and the anode may be the reason that leads to the lower transition speed of discharge at the moment of arc initiation.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10974012)
文摘The resistance characteristics of a continuously-graded distributed Bragg reflector(DBR) in a 980-nm verticalcavity surface-emitting laser(VCSEL) are modeled in detail.The junction resistances between the layers of both the p-and n-DBR mirrors are analysed by combining the thermionic emission model and the finite difference method.In the meantime,the intrinsic resistance of the DBR material system is calculated to make a comparison with the junction resistance.The minimal values of series resistances of the graded p-and n-type DBR mirrors and the lateral temperature-dependent resistance variation are calculated and discussed.The result indicates the potential to optimize the design of the DBR reflectors of the 980-nm VCSELs.
基金Supported by the Shanghai Committee of Science and Technology,China (03 DZ14014)
文摘Effect of working temperature on the resistance characteristic including the permeability coefficient and the pressure drop evolution of a pleated stainless steel woven filter with a nominal pore size of 0.5 μm has been studied. The permeability coefficient was obtained based on the pressure drop data and the Darcy's law. In three filtration experiments, pure carbon dioxide at 283 K, nitrogen at 85 K and liquid helium at 18 K are adopted, respectively. It is found that the permeability coefficient decreases at the working temperature due to the cold shrink of the filter element at cryogenic temperature. Then, two kinds of feed slurries, mixture of liquid nitrogen and solid carbon dioxide at 85 K, and mixture of liquid helium and solid nitrogen at 18 K, flow into the filter cell. The solid particles are deposited on the filter surface to form a filter cake and the purified liquid flows through the filter. It is found that the pressure drop evolution shows the same trend on these two temperatures, which can be divided into three stages with high filtration efficiency, indicating the feasibility of the filter for cryogenic application. However, variant cake resistances are obtained, which is resulted from the different interactions between solid particles in the feed slurry at lower working temperature.