Objectives:To assess the clinical outcomes of frozen-thawed blastocysts transfer in natural and hormonally controlled cycles.Methods:A retrospective analysis of natural and hormonally controlled cycle for 246 frozen-t...Objectives:To assess the clinical outcomes of frozen-thawed blastocysts transfer in natural and hormonally controlled cycles.Methods:A retrospective analysis of natural and hormonally controlled cycle for 246 frozen-thawed blastocyst transfer cycles,the clinical pregnancy rate,implantation rate,early abortion rate were compared.Results:Of the 192 hormonally controlled cycles,the cancel rate,clinical pregnancy rate per ET,implantation rate and abortion rate were 7.3%(14/192),53.9%(96/178),38.8%(131/338)and 11.5%(11/96)respectively,whereas in 54 natural cycles,these rates were 16.7%(9/54),68.9%(31/45),52.9%(45/85)and 16.1%(5/31)respectively.There was no significant difference between the two groups with regard to the clinical pregnancy and abortion rate per ET,but the cancel rate and implantation rate were higher in natural cycles.However,the pregnancy and implantation rates of patients without PCOS in hormonal control cycles(57.2%,40.9%)were similar with those in natural cycles(P>0.05).Conclusion:These findings suggested that both hormonally controlled and natural cycles had similar pregnancy outcomes in frozen-thawed blastocysts transfer.展开更多
Using a new low-temperature dynamic triaxial apparatus, the influence law of freezing-thawing cycles on clay shear strength is studied. In this research, the concept of correction coefficients of freezing-thawing cycl...Using a new low-temperature dynamic triaxial apparatus, the influence law of freezing-thawing cycles on clay shear strength is studied. In this research, the concept of correction coefficients of freezing-thawing cycles on clay static strength, cohesion and internal friction angles is proposed, and the change patterns, correction curves and regressive formulae of clay static strength, cohesion and internal friction angles under freezing-thawing cycles are given. The test results indicate that with increasing numbers of freezing-thawing cycles, the clay static strength and cohesion decrease exponentially but the internal friction angle increases exponentially. The performance of static strength, cohesion and internal friction angles are different with increasing numbers of freezing-thawing cycles, i.e., the static strength decreases constantly until about 30% of the initial static strength prior to the freezing-thawing cycling and then stays basically stable. After 5-7 freezing-thawing cycles, the cohesion decreases gradually to about 70% of the initial cohesion. The internal friction angle increases about 20% after the first freezing-thawing cycle, then increases gradually close to a stable value which is an increase of about 40% of the internal friction angle. The freezing-thawing process can increase the variation of the density of the soil samples; therefore, strict density discreteness standards of frozen soil sample preparation should be established to ensure the reliability of the test results.展开更多
Regarding the freezing damage of high-grade highway subgrade in seasonally frozen area,the thesis explores the effect on the dynamic behavior of subgrade soil under freeze–thaw cycles and draws the change law of para...Regarding the freezing damage of high-grade highway subgrade in seasonally frozen area,the thesis explores the effect on the dynamic behavior of subgrade soil under freeze–thaw cycles and draws the change law of parameters(including dynamic strength,dynamic cohesion,and internal friction angle;and dynamic elastic modulus)of high-grade highway-subgrade soil with the number of freeze–thaw cycles.It aims to provide the reference for operation and maintenance of a high-grade highway.Conclusions:(1)Dynamic strength tends to decline evidently after freeze–thaw cycles,with 60%~70%decline after three cycles,and remains stable after five to seven cycles.(2)With the number of freeze–thaw cycles increasing,the internal friction angle fluctuates within a certain range without an obvious change law,only presenting the tendency of dropping off.The dynamic cohesion declines obviously,about 20%~40%after seven freeze–thaw cycles,and then tends to be stable.(3)With the number of freeze-thaw cycles increasing,the dynamic elastic modulus and maximum dynamic elastic modulus are inclined to decrease distinctly.After five freeze–thaw cycles,the former declines 30%~40%and then remains stable.Meanwhile,the latter falls 20%~40%.展开更多
文摘Objectives:To assess the clinical outcomes of frozen-thawed blastocysts transfer in natural and hormonally controlled cycles.Methods:A retrospective analysis of natural and hormonally controlled cycle for 246 frozen-thawed blastocyst transfer cycles,the clinical pregnancy rate,implantation rate,early abortion rate were compared.Results:Of the 192 hormonally controlled cycles,the cancel rate,clinical pregnancy rate per ET,implantation rate and abortion rate were 7.3%(14/192),53.9%(96/178),38.8%(131/338)and 11.5%(11/96)respectively,whereas in 54 natural cycles,these rates were 16.7%(9/54),68.9%(31/45),52.9%(45/85)and 16.1%(5/31)respectively.There was no significant difference between the two groups with regard to the clinical pregnancy and abortion rate per ET,but the cancel rate and implantation rate were higher in natural cycles.However,the pregnancy and implantation rates of patients without PCOS in hormonal control cycles(57.2%,40.9%)were similar with those in natural cycles(P>0.05).Conclusion:These findings suggested that both hormonally controlled and natural cycles had similar pregnancy outcomes in frozen-thawed blastocysts transfer.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2018D12National Natural Science Foundation of Heilongjiang Province under Grant No.E 2016045+1 种基金National Natural Science Foundation of China under Grant No.5137816451508140
文摘Using a new low-temperature dynamic triaxial apparatus, the influence law of freezing-thawing cycles on clay shear strength is studied. In this research, the concept of correction coefficients of freezing-thawing cycles on clay static strength, cohesion and internal friction angles is proposed, and the change patterns, correction curves and regressive formulae of clay static strength, cohesion and internal friction angles under freezing-thawing cycles are given. The test results indicate that with increasing numbers of freezing-thawing cycles, the clay static strength and cohesion decrease exponentially but the internal friction angle increases exponentially. The performance of static strength, cohesion and internal friction angles are different with increasing numbers of freezing-thawing cycles, i.e., the static strength decreases constantly until about 30% of the initial static strength prior to the freezing-thawing cycling and then stays basically stable. After 5-7 freezing-thawing cycles, the cohesion decreases gradually to about 70% of the initial cohesion. The internal friction angle increases about 20% after the first freezing-thawing cycle, then increases gradually close to a stable value which is an increase of about 40% of the internal friction angle. The freezing-thawing process can increase the variation of the density of the soil samples; therefore, strict density discreteness standards of frozen soil sample preparation should be established to ensure the reliability of the test results.
基金funded by the National Natural Science Foundation of China (No. 51378057)
文摘Regarding the freezing damage of high-grade highway subgrade in seasonally frozen area,the thesis explores the effect on the dynamic behavior of subgrade soil under freeze–thaw cycles and draws the change law of parameters(including dynamic strength,dynamic cohesion,and internal friction angle;and dynamic elastic modulus)of high-grade highway-subgrade soil with the number of freeze–thaw cycles.It aims to provide the reference for operation and maintenance of a high-grade highway.Conclusions:(1)Dynamic strength tends to decline evidently after freeze–thaw cycles,with 60%~70%decline after three cycles,and remains stable after five to seven cycles.(2)With the number of freeze–thaw cycles increasing,the internal friction angle fluctuates within a certain range without an obvious change law,only presenting the tendency of dropping off.The dynamic cohesion declines obviously,about 20%~40%after seven freeze–thaw cycles,and then tends to be stable.(3)With the number of freeze-thaw cycles increasing,the dynamic elastic modulus and maximum dynamic elastic modulus are inclined to decrease distinctly.After five freeze–thaw cycles,the former declines 30%~40%and then remains stable.Meanwhile,the latter falls 20%~40%.