Frozen dough technology can effectively recover sensory quality of frozen flour products.This technique has gradually drawn the research interest in the industrialization of staple food.However,the quality of the fina...Frozen dough technology can effectively recover sensory quality of frozen flour products.This technique has gradually drawn the research interest in the industrialization of staple food.However,the quality of the final frozen products remains inferior to that of fresh products.This study reviewed the deterioration of gluten network in dough caused by ice recrystallization and various additives.This study also investigated the optimization of the freezing process and other empirical improvement techniques.Suggestions for future research were also provided.展开更多
Starch with different particle sizes has different compositions and different physical and chemical properties.The amylopectin content and protein content and lipid content of small granule B starch are higher than th...Starch with different particle sizes has different compositions and different physical and chemical properties.The amylopectin content and protein content and lipid content of small granule B starch are higher than that of A-type starch,which can form spiral complex to limit the expansion of starch.Under the same treatment conditions,B-type starch is more vulnerable to damage,sensitive to freezing storage,even breaks in freezing storage,and has higher gelatinization temperature than other starch during freezing.Amylose contained in A-type has high content,high crystallinity,high degree of ordering after frozen storage and insensitivity to frozen storage,which is beneficial to improve the stability of pores and texture of frozen dough.With the extension of freezing time,the content of amylose decreased,while the content of various amylopectin increased and the conformation of polysaccharide changed.Starch deterioration is different under different frozen storage conditions.The deterioration mechanism of frozen dough can be evaluated by variety of starch characteristics during freezing process,which is of great guiding significance to the improvement of frozen dough technology.展开更多
The effect of reduced glutathione (GSH) on fresh and pre-proofed frozen dough rheological properties were investigated using dynamic stress rheometry and small scale extensibility with the addition of three levels (80...The effect of reduced glutathione (GSH) on fresh and pre-proofed frozen dough rheological properties were investigated using dynamic stress rheometry and small scale extensibility with the addition of three levels (80×10-6, 160× 10-6 and 240×10-6 GSH) and six storage times (0 and 1 day, 2, 4, 6 and 8 weeks). Three relaxation times (1, 13 and 26min) after loading the dough in the rheometer were used to determine storage (G’) and loss (G”) moduli. Correlations for G’ (r=0.678 and 0.622 at 0.05, and 10Hz, respectively) and G” (r=0.699, and 0.690 at 0.05, and 10Hz, respectively) were observed with the area under the extension curve at 26 min relaxation time. The addition of GSH to fresh dough reduced G’ (16.4% to 55.9%) and G” (13.7% to 52.2%). Freezing and frozen storage caused increase in G’ and G”. The addition of GSH reduced dough strength indicated by the reduction in maximum resistance to extension (Rmax) and the ratio of maximum resistance to extensibility (Rmax/E). The reduction in Rmax across all relaxation times ranged from 16.2% to 59.4%. An increase in dough extension (E) was observed with 240×10-6 GSH at all frozen storage and rest period times. Addition of GSH caused an increase of liquid phase (30.6% to 35.3%) in fresh dough and frozen dough (10.3% to 20.7%) after one day frozen storage. Negative correlations of water content in the solid phase with dough extensibility and area under the extensibility curve were found (r=-0.594 and-0.563, respectively, p<0.001). This suggests a loss of dough extensibility and strength as the water holding capacity of the dough components changes during frozen storage.展开更多
基金This work was supported by Key Scientific and Technological Project of Henan Province(No.202102110143)Talent Projects from Henan University of Technology(2018RCJH08)the Joint Foundations from the NSFC-Henan Province(No.U1604235).
文摘Frozen dough technology can effectively recover sensory quality of frozen flour products.This technique has gradually drawn the research interest in the industrialization of staple food.However,the quality of the final frozen products remains inferior to that of fresh products.This study reviewed the deterioration of gluten network in dough caused by ice recrystallization and various additives.This study also investigated the optimization of the freezing process and other empirical improvement techniques.Suggestions for future research were also provided.
基金supported by the Key scientific and technological project of Henan Province(No.202102110143)Talent Projects from Henan University of Technology(No.2018RCJH08)the Joint Foundations from the NSFC-Henan Province(No.U1604235)。
文摘Starch with different particle sizes has different compositions and different physical and chemical properties.The amylopectin content and protein content and lipid content of small granule B starch are higher than that of A-type starch,which can form spiral complex to limit the expansion of starch.Under the same treatment conditions,B-type starch is more vulnerable to damage,sensitive to freezing storage,even breaks in freezing storage,and has higher gelatinization temperature than other starch during freezing.Amylose contained in A-type has high content,high crystallinity,high degree of ordering after frozen storage and insensitivity to frozen storage,which is beneficial to improve the stability of pores and texture of frozen dough.With the extension of freezing time,the content of amylose decreased,while the content of various amylopectin increased and the conformation of polysaccharide changed.Starch deterioration is different under different frozen storage conditions.The deterioration mechanism of frozen dough can be evaluated by variety of starch characteristics during freezing process,which is of great guiding significance to the improvement of frozen dough technology.
基金Financial Support of Oklahorna Wheat Foundation, Oklahome Wheat Commission and Oklahoma Experiment Station of Oklahoma State University.
文摘The effect of reduced glutathione (GSH) on fresh and pre-proofed frozen dough rheological properties were investigated using dynamic stress rheometry and small scale extensibility with the addition of three levels (80×10-6, 160× 10-6 and 240×10-6 GSH) and six storage times (0 and 1 day, 2, 4, 6 and 8 weeks). Three relaxation times (1, 13 and 26min) after loading the dough in the rheometer were used to determine storage (G’) and loss (G”) moduli. Correlations for G’ (r=0.678 and 0.622 at 0.05, and 10Hz, respectively) and G” (r=0.699, and 0.690 at 0.05, and 10Hz, respectively) were observed with the area under the extension curve at 26 min relaxation time. The addition of GSH to fresh dough reduced G’ (16.4% to 55.9%) and G” (13.7% to 52.2%). Freezing and frozen storage caused increase in G’ and G”. The addition of GSH reduced dough strength indicated by the reduction in maximum resistance to extension (Rmax) and the ratio of maximum resistance to extensibility (Rmax/E). The reduction in Rmax across all relaxation times ranged from 16.2% to 59.4%. An increase in dough extension (E) was observed with 240×10-6 GSH at all frozen storage and rest period times. Addition of GSH caused an increase of liquid phase (30.6% to 35.3%) in fresh dough and frozen dough (10.3% to 20.7%) after one day frozen storage. Negative correlations of water content in the solid phase with dough extensibility and area under the extensibility curve were found (r=-0.594 and-0.563, respectively, p<0.001). This suggests a loss of dough extensibility and strength as the water holding capacity of the dough components changes during frozen storage.