The strength of warm frozen soils in permafrost is fundamentally significant to estimate and predict the ground settlements from construction activities. A study was therefore initiated to assess the strength and its ...The strength of warm frozen soils in permafrost is fundamentally significant to estimate and predict the ground settlements from construction activities. A study was therefore initiated to assess the strength and its behaviors of undisturbed and reconstituted frozen soils at temperatures close to 0 ℃. A series of triaxial compression tests(TCT) were performed by using a developed testing apparatus and a matching specimen-preparation method. The confinement was applied from air pressure, the temperature in the specimen was maintained using two-end refrigeration, and multi-stage loading on a single specimen was adopted to determine the strength. The test results showed that the strength, both for the undisturbed and reconstituted frozen-soil specimens, was significantly dependent on the temperatures and independent of the applied confining pressures. Additionally, the strength of undisturbed frozen soils was about 1.6 times more than that for reconstituted frozen soils. These observations were closely associated with the structures existing between pore-ice and gravels with large diameters.展开更多
When water between soil particles is frozen, the strength and stiffness behavior of soils significantly change. Thus, nu- merous experimental studies in the laboratory have been carried out to characterize the strengt...When water between soil particles is frozen, the strength and stiffness behavior of soils significantly change. Thus, nu- merous experimental studies in the laboratory have been carried out to characterize the strength and stiffness of frozen soils. The goals of this study are to evaluate the strength characteristics of frozen soils, which underwent confinement in freezing and shearing stages, and to estimate the stiffness variation by shear wave velocity during shear phase. The specimens are prepared in a brass cell by mixing sand and silt with 10% degree of saturation at a relative density of 60%. The applied normal stresses as confining stresses are 5, 10, 25 and 50 kPa. When the temperature of the specimens is lowered up to -5 ~C, direct shear tests are carried out. Furthermore, shear waves are continuously measured through bender elements during shearing stage for the investigation of stiffness change. Test results show that shear strength and stiffness are significantly affected by the confining stress in freezing and shearing phases. This study suggests that the strength and stiffness of frozen soils may be dependent on the confining stresses applied during freezing and shearing.展开更多
Lagoon berms in western Alaska are difficult to design and build due to limited resources, high cost of construction and materials, and warm permafrost conditions. This paper explores methods to treat locally availabl...Lagoon berms in western Alaska are difficult to design and build due to limited resources, high cost of construction and materials, and warm permafrost conditions. This paper explores methods to treat locally available frozen materials and use them for berm construction. The goal is to find an optimized mix ratio for cement and additives that can be effective in increasing the strength and decreasing the thaw settlement of an ice-rich frozen silty soil. Soil of similar type and ice content to the permafrost found at a project site in Eek, Alaska is prepared in a cold room. The frozen soil is pulverized and cement, additives and fibers are added to the samples for enhancing shear strength and controlling thaw settlement. Thaw settlement and direct shear tests are performed to assess strength and settlement characteristics. This paper presents a sample preparation method, data from thaw settlement and direct shear tests, and analyses of the test results and preliminary conclusions.展开更多
To study the influence of temperature and water content on ultrasonic wave velocity and to establish the relationship between ultrasonic wave velocity and frozen silty clay strength, ultrasonic tests were conducted to...To study the influence of temperature and water content on ultrasonic wave velocity and to establish the relationship between ultrasonic wave velocity and frozen silty clay strength, ultrasonic tests were conducted to frozen silty clay by using RSM-SY5(T) nonmetal supersonic test meter, and the tensile strength and compressive strength of silty clay were measured under various negative temperatures. Test and analysis results indicate that, ultrasonic wave velocity rapidly changes in the temperature range of-1 ℃ to -5 ℃. Ultrasonic wave velocity increased with an increase of water content until the water content reached the critical water content, while decreased with an increase of water content after the water content exceeded the critical water content. This study showed that there was strong positive correlation between the ul- trasonic wave velocity and the frozen soil strength. As ultrasonic wave velocity increased, either tensile strength or com- pressive strength increased. Based on the experimental data, the relationship between ultrasonic wave velocity and frozen silty clay strength was obtained through regression analysis. It was found that the ultrasonic test technique can be used to test frozen soils and lay the foundation for the determination of frozen soil strength.展开更多
基金supported by National Natural Science Foundation of China (No. 51304209)the Natural Science Foundation of Jiangsu Province of China (No. BK20141135)the Fundamental Research Funds for the Central Universities (No. 2015QNA63)
文摘The strength of warm frozen soils in permafrost is fundamentally significant to estimate and predict the ground settlements from construction activities. A study was therefore initiated to assess the strength and its behaviors of undisturbed and reconstituted frozen soils at temperatures close to 0 ℃. A series of triaxial compression tests(TCT) were performed by using a developed testing apparatus and a matching specimen-preparation method. The confinement was applied from air pressure, the temperature in the specimen was maintained using two-end refrigeration, and multi-stage loading on a single specimen was adopted to determine the strength. The test results showed that the strength, both for the undisturbed and reconstituted frozen-soil specimens, was significantly dependent on the temperatures and independent of the applied confining pressures. Additionally, the strength of undisturbed frozen soils was about 1.6 times more than that for reconstituted frozen soils. These observations were closely associated with the structures existing between pore-ice and gravels with large diameters.
基金supported by a gran (13IFIP-B06700801) from Plant Research Program funded by Korea Agency for Infrastructure Technolo gy Advancement
文摘When water between soil particles is frozen, the strength and stiffness behavior of soils significantly change. Thus, nu- merous experimental studies in the laboratory have been carried out to characterize the strength and stiffness of frozen soils. The goals of this study are to evaluate the strength characteristics of frozen soils, which underwent confinement in freezing and shearing stages, and to estimate the stiffness variation by shear wave velocity during shear phase. The specimens are prepared in a brass cell by mixing sand and silt with 10% degree of saturation at a relative density of 60%. The applied normal stresses as confining stresses are 5, 10, 25 and 50 kPa. When the temperature of the specimens is lowered up to -5 ~C, direct shear tests are carried out. Furthermore, shear waves are continuously measured through bender elements during shearing stage for the investigation of stiffness change. Test results show that shear strength and stiffness are significantly affected by the confining stress in freezing and shearing phases. This study suggests that the strength and stiffness of frozen soils may be dependent on the confining stresses applied during freezing and shearing.
文摘Lagoon berms in western Alaska are difficult to design and build due to limited resources, high cost of construction and materials, and warm permafrost conditions. This paper explores methods to treat locally available frozen materials and use them for berm construction. The goal is to find an optimized mix ratio for cement and additives that can be effective in increasing the strength and decreasing the thaw settlement of an ice-rich frozen silty soil. Soil of similar type and ice content to the permafrost found at a project site in Eek, Alaska is prepared in a cold room. The frozen soil is pulverized and cement, additives and fibers are added to the samples for enhancing shear strength and controlling thaw settlement. Thaw settlement and direct shear tests are performed to assess strength and settlement characteristics. This paper presents a sample preparation method, data from thaw settlement and direct shear tests, and analyses of the test results and preliminary conclusions.
基金supported by the National Natural Science Foundation of China (No.41271080 and No.41230630)the Western Project Program of the Chinese Academy of Sciences(KZCX2-XB3-19)the open fund of Qinghai Research and Observation Base, Key Laboratory of Highway Construction and Maintenance Technology in Permafrost Region Ministry of Transport, PRC (2012-12-4)
文摘To study the influence of temperature and water content on ultrasonic wave velocity and to establish the relationship between ultrasonic wave velocity and frozen silty clay strength, ultrasonic tests were conducted to frozen silty clay by using RSM-SY5(T) nonmetal supersonic test meter, and the tensile strength and compressive strength of silty clay were measured under various negative temperatures. Test and analysis results indicate that, ultrasonic wave velocity rapidly changes in the temperature range of-1 ℃ to -5 ℃. Ultrasonic wave velocity increased with an increase of water content until the water content reached the critical water content, while decreased with an increase of water content after the water content exceeded the critical water content. This study showed that there was strong positive correlation between the ul- trasonic wave velocity and the frozen soil strength. As ultrasonic wave velocity increased, either tensile strength or com- pressive strength increased. Based on the experimental data, the relationship between ultrasonic wave velocity and frozen silty clay strength was obtained through regression analysis. It was found that the ultrasonic test technique can be used to test frozen soils and lay the foundation for the determination of frozen soil strength.