To study the influence of temperature and water content on ultrasonic wave velocity and to establish the relationship between ultrasonic wave velocity and frozen silty clay strength, ultrasonic tests were conducted to...To study the influence of temperature and water content on ultrasonic wave velocity and to establish the relationship between ultrasonic wave velocity and frozen silty clay strength, ultrasonic tests were conducted to frozen silty clay by using RSM-SY5(T) nonmetal supersonic test meter, and the tensile strength and compressive strength of silty clay were measured under various negative temperatures. Test and analysis results indicate that, ultrasonic wave velocity rapidly changes in the temperature range of-1 ℃ to -5 ℃. Ultrasonic wave velocity increased with an increase of water content until the water content reached the critical water content, while decreased with an increase of water content after the water content exceeded the critical water content. This study showed that there was strong positive correlation between the ul- trasonic wave velocity and the frozen soil strength. As ultrasonic wave velocity increased, either tensile strength or com- pressive strength increased. Based on the experimental data, the relationship between ultrasonic wave velocity and frozen silty clay strength was obtained through regression analysis. It was found that the ultrasonic test technique can be used to test frozen soils and lay the foundation for the determination of frozen soil strength.展开更多
In the areas of seasonal and perennial frozen soil, soil layers always contain different exent free stagnant water and frozen stagnant water, which may save the pressing need of water for spring plants. The paper, acc...In the areas of seasonal and perennial frozen soil, soil layers always contain different exent free stagnant water and frozen stagnant water, which may save the pressing need of water for spring plants. The paper, according to the laboratory stimulation of water movement in soils during freezing, analyzed formation and affecting factors for frozen stagnant water. In light of the fact that water content obviously increased after freeze. The authors advanced technical measures for afforestation in arid regions, aiming to using this part of water to assure plant’s survival and growth.展开更多
土体冻结过程中不同位置液态水的能量差引起了水分迁移与重分布,进而引发冻胀,关于势能差驱动下的冻土水分迁移问题一直由于技术手段的匮乏而没有完全解决。利用新近推出的可用于冻土水热研究的p F meter基质势传感器与5TM水分传感器,...土体冻结过程中不同位置液态水的能量差引起了水分迁移与重分布,进而引发冻胀,关于势能差驱动下的冻土水分迁移问题一直由于技术手段的匮乏而没有完全解决。利用新近推出的可用于冻土水热研究的p F meter基质势传感器与5TM水分传感器,实时监测研究饱和青藏红黏土单向冻结过程中基质势-液态含水率-温度-含冰量-水分迁移量-冻胀变形之间在时间、空间上的耦合变化关系。结果表明:土体温度场变化引起内部液态水相变,打破了原有的能量平衡,试验结束后12~14 cm土样高处含水率最高达到55%,靠近冻融交界面处(10 cm)的未冻区含水率减小至25.8%,水分整体向冷端发生迁移;土体冻胀的快慢及冻胀量大小与水分迁移速率及数量具有线性关系;试验后土体内总含水率的分布与分凝冰透镜体的分布一致,已冻区液态含水率的分布与温度梯度近似成线性关系,未冻区液态含水率的分布与水分的迁移量有关,与温度梯度无关。此外,温度场对水分场的变化具有诱导作用但二者并不同步,当冻结速率减小到一定程度时水分才开始迁移,第10小时后温度场趋于稳定而水分迁移并未停止。研究成果揭示了土体单向冻结过程中液态水、基质势、温度等物理参数的动态变化过程及内在联系,为冻胀机制的研究以及冻胀模型的建立提供了试验基础。展开更多
基金supported by the National Natural Science Foundation of China (No.41271080 and No.41230630)the Western Project Program of the Chinese Academy of Sciences(KZCX2-XB3-19)the open fund of Qinghai Research and Observation Base, Key Laboratory of Highway Construction and Maintenance Technology in Permafrost Region Ministry of Transport, PRC (2012-12-4)
文摘To study the influence of temperature and water content on ultrasonic wave velocity and to establish the relationship between ultrasonic wave velocity and frozen silty clay strength, ultrasonic tests were conducted to frozen silty clay by using RSM-SY5(T) nonmetal supersonic test meter, and the tensile strength and compressive strength of silty clay were measured under various negative temperatures. Test and analysis results indicate that, ultrasonic wave velocity rapidly changes in the temperature range of-1 ℃ to -5 ℃. Ultrasonic wave velocity increased with an increase of water content until the water content reached the critical water content, while decreased with an increase of water content after the water content exceeded the critical water content. This study showed that there was strong positive correlation between the ul- trasonic wave velocity and the frozen soil strength. As ultrasonic wave velocity increased, either tensile strength or com- pressive strength increased. Based on the experimental data, the relationship between ultrasonic wave velocity and frozen silty clay strength was obtained through regression analysis. It was found that the ultrasonic test technique can be used to test frozen soils and lay the foundation for the determination of frozen soil strength.
文摘In the areas of seasonal and perennial frozen soil, soil layers always contain different exent free stagnant water and frozen stagnant water, which may save the pressing need of water for spring plants. The paper, according to the laboratory stimulation of water movement in soils during freezing, analyzed formation and affecting factors for frozen stagnant water. In light of the fact that water content obviously increased after freeze. The authors advanced technical measures for afforestation in arid regions, aiming to using this part of water to assure plant’s survival and growth.
文摘土体冻结过程中不同位置液态水的能量差引起了水分迁移与重分布,进而引发冻胀,关于势能差驱动下的冻土水分迁移问题一直由于技术手段的匮乏而没有完全解决。利用新近推出的可用于冻土水热研究的p F meter基质势传感器与5TM水分传感器,实时监测研究饱和青藏红黏土单向冻结过程中基质势-液态含水率-温度-含冰量-水分迁移量-冻胀变形之间在时间、空间上的耦合变化关系。结果表明:土体温度场变化引起内部液态水相变,打破了原有的能量平衡,试验结束后12~14 cm土样高处含水率最高达到55%,靠近冻融交界面处(10 cm)的未冻区含水率减小至25.8%,水分整体向冷端发生迁移;土体冻胀的快慢及冻胀量大小与水分迁移速率及数量具有线性关系;试验后土体内总含水率的分布与分凝冰透镜体的分布一致,已冻区液态含水率的分布与温度梯度近似成线性关系,未冻区液态含水率的分布与水分的迁移量有关,与温度梯度无关。此外,温度场对水分场的变化具有诱导作用但二者并不同步,当冻结速率减小到一定程度时水分才开始迁移,第10小时后温度场趋于稳定而水分迁移并未停止。研究成果揭示了土体单向冻结过程中液态水、基质势、温度等物理参数的动态变化过程及内在联系,为冻胀机制的研究以及冻胀模型的建立提供了试验基础。