The oil palm (Elaeis guineensis Jacq.) is a diploid perennial plant of the Arecaceae family. It is the most important plant cultivated for oil production. To ensure this production, certain optimal conditions are requ...The oil palm (Elaeis guineensis Jacq.) is a diploid perennial plant of the Arecaceae family. It is the most important plant cultivated for oil production. To ensure this production, certain optimal conditions are required: temperature, sunshine, rainfall, etc. The oil palm ensures its survival through the fruits borne on bunches located at the axis of the 17th to 20th leaves from the central stem. From pollination to the maturity of a bunch it takes about 4.5 to 6 months. Several events occur during this period: seed enlargement, weight increase, colour change, etc., but also important physiological changes: synthesis of some pigments (anthocyanin), increase in oil content correlated with the decrease in water content, etc. All of these constitute factors that can provide a better understanding of the biology of the seed. The aim of this work was to review some of the important parameters involved in the development and maturation of oil palm fruit bunches. These factors are classified into physiological, biochemical as well as environmental. The physiological parameters are color, appearance of embryo, seed weight and fruit detachment from bunches;Biochemical parameters include water content, oil content, carbohydrate, protein, mineral contents and lipase activity while temperature is the main environmental factor that affects fruit maturation. Thorough research has not yet been done at the different stages of maturation and ripening, thus a deep look into this may open up new avenues for research on early germinated oil palm seed production prior to seed dormancy.展开更多
The adsorption capacity of activated carbon produced from oil palm empty fruit bunches through removal of 2,4-dichlorophenol from aqueous solution was carried out in the laboratory. The activated carbon was produced b...The adsorption capacity of activated carbon produced from oil palm empty fruit bunches through removal of 2,4-dichlorophenol from aqueous solution was carried out in the laboratory. The activated carbon was produced by thermal activation of activation time with 30 min at 800℃. The adsorption process conditions were determined with the statistical optimization followed by central composite design. A developed polynomial model for operating conditions of adsorption process indicated that the optimum conditions for maximum adsorption of phenolic compound were: agitation rate of 100 r/min, contact time of 8 h, initial adsorbate concentration of 250 mg/L and pH 4. Adsorption isotherms were conducted to evaluate biosorption process. Langmuir isotherm was more favorable (R^2=0.93) for removal of 2,4-dichlorophenol by the activated carbon rather than Freundlich isotherm (R^2=0.88).展开更多
Activated carbons derived from oil palm empty fruit bunches (EFB) were investigated to find the suitability of its application for removal of phenol in aqueous solution through adsorption process, Two types of activ...Activated carbons derived from oil palm empty fruit bunches (EFB) were investigated to find the suitability of its application for removal of phenol in aqueous solution through adsorption process, Two types of activation namely; thermal activation at 300, 500 and 800℃and physical activation at 150℃ (boiling treatment) were used for the production of the activated carbons. A control (untreated EFB) was used to compare the adsorption capacity of the activated carbons produced from these processes. The results indicated that the activated carbon derived at the temperature of 800℃ showed maximum absorption capacity in the aqueous solution of phenol. Batch adsorption studies showed an equilibrium time of 6 h for the activated carbon at 800℃. It was observed that the adsorption capacity was higher at lower values of pH (2-3) and higher value of initial concentration of phenol (200-300 mg/L). The equilibrium data fitted better with the Freundlich adsorption isotherm compared to the Langmuir. Kinetic studies of phenol adsorption onto activated carbons were also studied to evaluate the adsorption rate. The estimated cost for production of activated carbon from EFB was shown in lower price (USD 0.50/kg of activated carbon) compared the activated carbon from other sources and processes.展开更多
The aim of the study was to investigate the effect of pre-treatments by using sodium hydroxide (NaOH) and acetic acid on oil palm Empty Fruit Bunch (EFB) fibres for the production of Medium Density Fibreboard (MDF). T...The aim of the study was to investigate the effect of pre-treatments by using sodium hydroxide (NaOH) and acetic acid on oil palm Empty Fruit Bunch (EFB) fibres for the production of Medium Density Fibreboard (MDF). The EFB fibres were treated with chemicals in the concentration range of 0.2%, 0.4%, 0.6% and 0.8% prior to refining. Single-homogenous layer MDF with 12 mm thickness and density of 720 kg/m3 was produced. Urea-Formaldehyde (UF) was applied at 10% loading (based on dry weight of dry fibres) as a binder. The physical properties (Water Absorption (WA) and Thickness Swelling (TS)) of the produced panels were tested according to European Standard, EN 622-5:2006. The results show that types of chemical used had greater effects than concentration on the dimensional stability of the MDF. EFB fibres treated with acetic acid produced MDF with better dimensional stability compared to the MDF NaOH treated fibres. High concentration of NaOH produced poor dimensional stability in the panels.展开更多
Robot technology is a very promising technology for agricultural sector, but the existing industrial robot could not deliver the above-mentioned criteria. Industrial robot mainly uses high voltage electrical power, wh...Robot technology is a very promising technology for agricultural sector, but the existing industrial robot could not deliver the above-mentioned criteria. Industrial robot mainly uses high voltage electrical power, which is not available at field and outdoor operation. The only available and reliable power is a hydraulic from the tractor. The harvester robot consumes the hydraulic power from the tractor and at the same time the tractor can be used as a traveling device for the robot. This paper describes the study on the development of autonomous tractor for the oil palm harvester. The development took considerations on the design of the electro-hydraulic system and the control software for the robot structure to be flexible enough to operate in plantation environment.展开更多
The co-gasification of sewage sludge and palm oil empty fruit bunch(EFB) in supercritical water(SCW) was conducted at 400 °C with a pressure of over 25 MPa. This study aimed to investigate the influence of EFB ad...The co-gasification of sewage sludge and palm oil empty fruit bunch(EFB) in supercritical water(SCW) was conducted at 400 °C with a pressure of over 25 MPa. This study aimed to investigate the influence of EFB addition on the syngas production and its composition. The heavy metal distribution and the leaching potential of the solid residue were also assessed. The results showed that syngas yield significantly increased with the addition of EFB into the feedstock. The cold gas efficiency(CGE) and carbon efficiency(CE) of co-gasification were higher than those of individual gasification. The actual syngas production from co-gasification of sludge and EFB was 45% higher than the theoretical total volume. The results indicated that the addition of EFB to sludge had the synergetic promotion effect on syngas production from sludge and EFB in supercritical water. This enhancement might be due to the dissolution of alkali metals from EFB and the adjustment of organic ratio. In addition, higher percentage of heavy metals were deposited and stabilized in the solid residue after SCWG. The leaching concentration of heavy metals from the solid residues was decreased to a level below the standard limit which enables it to be safely disposed of in landfill. In conclusion, the EFB addition has been proved to promote syngas production,as well as, stabilize the heavy metal in solid residues during co-SCWG.展开更多
Lignocellulosic materials are promising alternative feedstocks for bioethanol production. However, the recalcitrant nature of lignocellulosic biomass necessitates an efficient pretreatment pretreatment step to improve...Lignocellulosic materials are promising alternative feedstocks for bioethanol production. However, the recalcitrant nature of lignocellulosic biomass necessitates an efficient pretreatment pretreatment step to improve the yield of fermentable sugars and maximizing the enzymatic hydrolysis efficiency. Microwave pretreatment may be a good alternative as it can reduce the pretreatment time and improve the enzymatic activity during hydrolysis. The overall goal of this paper is to expand the current state of knowledge on microwave-based pretreatment of lignocellulosic biomass and microwave assisted enzymatic reaction or Microwave Irradiation-Enzyme Coupling Catalysis (MIECC). In the present study, a comparison of microwave assisted alkali pretreatment was tried using Oil Palm empty fruit bunch. The microwave assisted alkali pretreatment of EFB using NaOH, significantly improved the enzymatic saccharification of EFB by removing more lignin and hemicellulose and increasing its accessibility to hydrolytic enzymes. The results showed that the optimum pretreatment condition was 3% (w/v) NaOH at 180 W for 12 minutes with the optimum component loss of lignin and holocellulose of about 74% and 24.5% respectively. The subsequent enzymatic saccharification of EFB pretreated by microwave assisted NaOH (3% w/v);resulted in 411 mg of reducing sugar per gram EFB at cellulose enzyme dosage of 20 FPU. The overall enhancement by the microwave treatment during the microwave assisted alkali pretreatment and microwave assisted enzymatic hydrolysis was 5.8 fold. The present study has highlighted the importance of well controlled microwave assisted enzymatic reaction to enhance the overall reaction rate of the process.展开更多
Copper nanoparticles were impregnated onto oil palm empty fruit bunch (EFB) powders via in-situ sol-gel method. The impregnation and interfacial interaction of copper nanoparticles with EFB were analysed by fourier tr...Copper nanoparticles were impregnated onto oil palm empty fruit bunch (EFB) powders via in-situ sol-gel method. The impregnation and interfacial interaction of copper nanoparticles with EFB were analysed by fourier transformed infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and atomic force microscopy (AFM). The interaction of copper nanoparticles with the surface functional groups of EFB powders was identified by FTIR analysis. The peak shift of O-H and C-O functional groups indicated the interaction between EFB and copper nanoparticles. Besides that, XRD and EDX analysis confirmed the formation of copper nanoparticles on EFB powder. Due to the copper impregnation, the crystallinity of the EFB was increased as shown by XRD. The particles size of nanoparticles was analysed via TEM and AFM where the sizes were in the range of 60 - 100 nm. These findings strongly suggest that, copper nanoparticles impregnated EFB powders can be synthesized via in- situ sol gel method.展开更多
Indonesia is the most producer of crude palm oil (CPO) worldwide with production more that 25 million tons in 2013. Through increasing production of CPO the wastes generated are growing up as well. The empty fruit bun...Indonesia is the most producer of crude palm oil (CPO) worldwide with production more that 25 million tons in 2013. Through increasing production of CPO the wastes generated are growing up as well. The empty fruit bunch of oil palm (EFB) is one of the solid waste (biomass) which is generated at the palm oil mill. Its amount is equivalent to the CPO production, but only about 50% of its weight are good fibers for further usage as industrial raw material. The EFB fiber consists an interesting honey comb/lightweight structure. By mixing the EFB natural fiber with bio binding agent based on potato the environmental friendly materials (biocomposites) can be produced which are 100% biodegadrable. The biocomposites with 2 mm thickness have strengthness about 7 GPa according to the 3 points bending test standard of DIN 53 457. After coating process the environmental friendly lightweight materials with density less than 0.4 g/cm3 will be ready to be implemented for different technical applications.展开更多
This work investigated the bio-oil production from oil palm empty fruit bunch (EFB) by continuous pyrolysis reactor under nitrogen and steam atmospheres as sweeping gas. The study parameters were particle size, biomas...This work investigated the bio-oil production from oil palm empty fruit bunch (EFB) by continuous pyrolysis reactor under nitrogen and steam atmospheres as sweeping gas. The study parameters were particle size, biomass feeding rate, reactor temperature, and reactor sweeping gas. The EFB particle ranges were below 500 micrometers, between 500 - 1180 micrometers and 1180 - 2230 micrometers. Feeding rates were 150, 350, and 550 rpm. Both factors were analyzed by single factor ANOVA. Additionally, Box-Behnken design was used to investigate temperature (350oC - 600oC) under the following nitrogen and steam flow rates as sweeping gas: 0, 100, and 200 cm3/min of nitrogen and 0, 9, and 18 cm3/min of steam. The mathematical model from Box-Behnken design succeeded in predicting the optimal conditions for normal and nitrogen atmospheres. A particle size below 1180 μm was determined to be optimal for bio-oil production. In a normal atmosphere or no sweeping gas, the condition was 475oC and 450 rpm of feed rate. The optimal condition for nitrogen atmosphere was 530oC, 450 rpm of feed rate, and 200 cm3/min of nitrogen flow rate. However, steam as sweeping gas caused high uncertainty and the model was unable to predict the optimal conditions accurately. The biooils from normal, nitrogen, steam, and mixed atmospheres were analyzed for general characteristics. NMR and GC-MS were used to analyze chemical compositions in the bio-oils. Relationships between physical and chemical characteristics were determined and discussed.展开更多
The existing mechanized oil palm harvester is claimed to be unsuccessful due to its inefficiency to harvest Fresh Fruit Bunch(FFB).It takes a lot of time compared to the conventional harvesting method,using human powe...The existing mechanized oil palm harvester is claimed to be unsuccessful due to its inefficiency to harvest Fresh Fruit Bunch(FFB).It takes a lot of time compared to the conventional harvesting method,using human power.Therefore a study was carried out using Denavit and Hartenberg(D-H)approach to automate the five Degrees of Freedom(DOF)harvester manipulator.The general objective was to reduce the number of workers required for harvesting as well as to provide comfortable ergonomic for the operator of oil palm harvester.The D-H’s convention was used for selecting frames of reference in robotics application which has become the standard way of representing robots and modeling their motions.In this study,the forward kinematics and inverse kinematics were used to deduce joint angles variables while the conventional Jacobian was used for motion velocity computation.The formulated inverse equations were tested manually on the harvester with given locations to obtain deduced joint angles.The results were θ_(1)=129.64°,θ_(3)=180°,θ_(4)=90°,which were quite accurate.Thus,the kinematics analysis of harvester arm automation was done successfully.展开更多
Composite materials from oil palmfiber enhance sustainability by utilizing renewable resources,reducing depen-dence on non-renewable materials,and lessening environmental impact.Despite their mechanical and dimen-siona...Composite materials from oil palmfiber enhance sustainability by utilizing renewable resources,reducing depen-dence on non-renewable materials,and lessening environmental impact.Despite their mechanical and dimen-sional stability limitations,oil palmfiber-based polymer composites offer significant advantages,such as natural abundance,potential weight reduction,and cost-effectiveness due to local availability and renewability.The growing interest in oil palm hybrid composites,made from blending differentfibers,is due to their custo-mizable mechanical and physical properties.Hybridization is one of the most effective methods to reinforce and improve the performance of oil palm-derived composite materials.This review investigates the structural qualities of hybrid composites made from oil palmfibers,their suitability for diverse applications,and recent advancements in thefield.By focusing on the availability,properties,applications,challenges,and future direc-tions of oil palmfiber hybrid composites,this review highlights the potential of these materials to enhance mechanical and functional properties,thereby contributing to sustainable development and innovation in com-posite materials.展开更多
Black liquor is obtained as a by-product of the pulping process,which is used to convert biomass into pulp by removing lignin,hemicelluloses and other extractives from wood to free cellulose fibers.Lignin represents a...Black liquor is obtained as a by-product of the pulping process,which is used to convert biomass into pulp by removing lignin,hemicelluloses and other extractives from wood to free cellulose fibers.Lignin represents a major constituent in black liquor,with quantities varying from 20%to 30%,of which a very low share is used for manufacturing value-added products,while the rest is mainly burned for energy purposes,thus underestimating its great potential as a raw material.Therefore,it is essential to establish new isolation and extraction methods to increase lignin valorization in the development of bio-based chemicals.The aim of this research work was to determine the effect of KOH or ethanol concentration as an isolation agent on lignin yields and the chemical characteristics of lignin isolated from formacell black liquor of oil palm empty fruit bunch(OPEFB).Isolation of lignin was carried out using KOH with various concentrations ranging from 5%to 15%(w/v).Ethanol was also used to precipitate lignin from black liquor at concentrations varying from 5%to 30%(v/v).The results obtained showed that the addition of KOH solution at 12.5%and 15%concentrations resulted in better lignin yield and chemical properties of lignin,i.e.,pH values of 3.86 and 4.27,lignin yield of 12.78%and 14.95%,methoxyl content of 11.33%and 10.13%,and lignin equivalent weights of 476.25 and 427.03,respectively.Due to its phenolic structure and rich functional groups that are favorable for modifications,lignin has the potential to be used as a green additive in the development of advanced biocomposite products in various applications to replace current fossil fuel-based material,ranging from fillers,fire retardants,formaldehyde scavengers,carbon fibers,aerogels,and wood adhesives.展开更多
The oil palm leaf miner, Coelaenomenodera lameensis, is currently the most destructive pest of oil palm in Ghana and other African oil palm growing countries, causing significant losses in fresh fruit bunch yield. Pro...The oil palm leaf miner, Coelaenomenodera lameensis, is currently the most destructive pest of oil palm in Ghana and other African oil palm growing countries, causing significant losses in fresh fruit bunch yield. Progressive pruning is an oil palm pruning method in which pruning is done at the same time as fresh fruit bunch harvesting. This study evaluated the impact of progressive pruning on leaf miner population in oil palm and how these two factors (leaf miner and progressive pruning) affect the yield of oil palm at the Benso Oil Palm Plantation Public listed company (BOPP. Plc). Five distinct blocks in the plantation were selected for observations on fronds at various ranks (33, 25, or 17) based on the degree of defoliation by counting the number of pests on leaflets at different phases of insect development. Fronds from selected plots were sampled in a Completely Randomized Design (CRD). The size of plots used for the study ranged between 19 to 45 hectares. A minimum of 78 fronds were evenly cut from each block for pest count depending on the block size. Secondary data on annual yields of fresh fruit bunches before and after the introduction of progressive pruning were also obtained from BOPP. Plc records from 2011-2020. The results from the analyzed data on leaf miner index before and after the introduction of progressive pruning showed that progressive pruning has, to a high extent (64% to 36%), reduced leaf miner populations in the plantation. Paired t-test on fresh fruit bunch yield has also revealed a significant (p < 0.001) increase in annual fresh fruit bunch yield due to progressive pruning. A regression analysis, however, revealed a lower rate of yield loss (3.05 to 2.70 tonnes) to leaf miner infestation after the introduction of progressive pruning. The study recommends progressive pruning as a key cultural practice for improving crop yields in leaf miner prone plantations.展开更多
The effects of non-thermal plasma (NTP) treatment on biomass in the form of pulverized palmbased empty fruit bunches (EFB) are investigated. Specifically, this study investigates the effects of NTP treatment on th...The effects of non-thermal plasma (NTP) treatment on biomass in the form of pulverized palmbased empty fruit bunches (EFB) are investigated. Specifically, this study investigates the effects of NTP treatment on the surface reactivity, morphology, oxygen-to-carbon (O/C) ratio of the EFB at varying treatment times. The surface reactivity is determined by the reaction of antioxidant functional groups or reactive species with 2,2-diphenyl-l-picrylhydrazyl (DPPH). By measuring the concentration of the DPPH with a spectrophotometer, the change in the amount of antioxidant functional groups can be measured to determine the surface reactivity. The reactions of the various lignin components in the EFB with respect to the NTP treatment are discussed by qualitatively assessing the changes in the Fourier transform infrared (FTIR) spectra. The surface morphology is examined by a scanning electron microscope. To determine the amount of oxygen deposited on the EFB by the air-based NTP treatment, the oxygen and carbon contents are measured by an energy dispersive x-ray detector to determine the O/C ratio. The results show that the NTP reactor produced reactive species such as atomic oxygen and ozone, increasing the surface reactivity and chemical scavenging rate of the EFB. Consequently, the surface morphology changed, with an observed rougher surface from the images of the EFB samples. The change in the appearance of the surface is accompanied by a high O/C ratio, and is caused by reactions of certain components of lignin due to the NTP treatment, The lignin component that was modified is believed to be syringyl, as the syringyl portion in the lignin of EFBs is higher compared to the other components. Syringyl components are detected in the range of F-FIR wavenumbers of 1109-1363 cm-1. With increasing NTP treatment times, the absorbance (of the peaks in the PTIR spectra) for syringyl related C-H and lignin associated C=C bonds decreases as the syringyl decomposes. The resulting release of carboxyl compounds increases the absorbance for the carbonyl C=O group. The results show that NTP treatment is able to modify the surface properties of EFB, and that the surface reactivity can be increased to improve their conversion and processing efficiencies.展开更多
文摘The oil palm (Elaeis guineensis Jacq.) is a diploid perennial plant of the Arecaceae family. It is the most important plant cultivated for oil production. To ensure this production, certain optimal conditions are required: temperature, sunshine, rainfall, etc. The oil palm ensures its survival through the fruits borne on bunches located at the axis of the 17th to 20th leaves from the central stem. From pollination to the maturity of a bunch it takes about 4.5 to 6 months. Several events occur during this period: seed enlargement, weight increase, colour change, etc., but also important physiological changes: synthesis of some pigments (anthocyanin), increase in oil content correlated with the decrease in water content, etc. All of these constitute factors that can provide a better understanding of the biology of the seed. The aim of this work was to review some of the important parameters involved in the development and maturation of oil palm fruit bunches. These factors are classified into physiological, biochemical as well as environmental. The physiological parameters are color, appearance of embryo, seed weight and fruit detachment from bunches;Biochemical parameters include water content, oil content, carbohydrate, protein, mineral contents and lipase activity while temperature is the main environmental factor that affects fruit maturation. Thorough research has not yet been done at the different stages of maturation and ripening, thus a deep look into this may open up new avenues for research on early germinated oil palm seed production prior to seed dormancy.
文摘The adsorption capacity of activated carbon produced from oil palm empty fruit bunches through removal of 2,4-dichlorophenol from aqueous solution was carried out in the laboratory. The activated carbon was produced by thermal activation of activation time with 30 min at 800℃. The adsorption process conditions were determined with the statistical optimization followed by central composite design. A developed polynomial model for operating conditions of adsorption process indicated that the optimum conditions for maximum adsorption of phenolic compound were: agitation rate of 100 r/min, contact time of 8 h, initial adsorbate concentration of 250 mg/L and pH 4. Adsorption isotherms were conducted to evaluate biosorption process. Langmuir isotherm was more favorable (R^2=0.93) for removal of 2,4-dichlorophenol by the activated carbon rather than Freundlich isotherm (R^2=0.88).
文摘Activated carbons derived from oil palm empty fruit bunches (EFB) were investigated to find the suitability of its application for removal of phenol in aqueous solution through adsorption process, Two types of activation namely; thermal activation at 300, 500 and 800℃and physical activation at 150℃ (boiling treatment) were used for the production of the activated carbons. A control (untreated EFB) was used to compare the adsorption capacity of the activated carbons produced from these processes. The results indicated that the activated carbon derived at the temperature of 800℃ showed maximum absorption capacity in the aqueous solution of phenol. Batch adsorption studies showed an equilibrium time of 6 h for the activated carbon at 800℃. It was observed that the adsorption capacity was higher at lower values of pH (2-3) and higher value of initial concentration of phenol (200-300 mg/L). The equilibrium data fitted better with the Freundlich adsorption isotherm compared to the Langmuir. Kinetic studies of phenol adsorption onto activated carbons were also studied to evaluate the adsorption rate. The estimated cost for production of activated carbon from EFB was shown in lower price (USD 0.50/kg of activated carbon) compared the activated carbon from other sources and processes.
文摘The aim of the study was to investigate the effect of pre-treatments by using sodium hydroxide (NaOH) and acetic acid on oil palm Empty Fruit Bunch (EFB) fibres for the production of Medium Density Fibreboard (MDF). The EFB fibres were treated with chemicals in the concentration range of 0.2%, 0.4%, 0.6% and 0.8% prior to refining. Single-homogenous layer MDF with 12 mm thickness and density of 720 kg/m3 was produced. Urea-Formaldehyde (UF) was applied at 10% loading (based on dry weight of dry fibres) as a binder. The physical properties (Water Absorption (WA) and Thickness Swelling (TS)) of the produced panels were tested according to European Standard, EN 622-5:2006. The results show that types of chemical used had greater effects than concentration on the dimensional stability of the MDF. EFB fibres treated with acetic acid produced MDF with better dimensional stability compared to the MDF NaOH treated fibres. High concentration of NaOH produced poor dimensional stability in the panels.
文摘Robot technology is a very promising technology for agricultural sector, but the existing industrial robot could not deliver the above-mentioned criteria. Industrial robot mainly uses high voltage electrical power, which is not available at field and outdoor operation. The only available and reliable power is a hydraulic from the tractor. The harvester robot consumes the hydraulic power from the tractor and at the same time the tractor can be used as a traveling device for the robot. This paper describes the study on the development of autonomous tractor for the oil palm harvester. The development took considerations on the design of the electro-hydraulic system and the control software for the robot structure to be flexible enough to operate in plantation environment.
基金financially supported by the National International Cooperation Project(2017YFE0107600 and 2016YFE0202000)the Zhejiang Provincial Natural Science Foundation Project(LY17E060005).
文摘The co-gasification of sewage sludge and palm oil empty fruit bunch(EFB) in supercritical water(SCW) was conducted at 400 °C with a pressure of over 25 MPa. This study aimed to investigate the influence of EFB addition on the syngas production and its composition. The heavy metal distribution and the leaching potential of the solid residue were also assessed. The results showed that syngas yield significantly increased with the addition of EFB into the feedstock. The cold gas efficiency(CGE) and carbon efficiency(CE) of co-gasification were higher than those of individual gasification. The actual syngas production from co-gasification of sludge and EFB was 45% higher than the theoretical total volume. The results indicated that the addition of EFB to sludge had the synergetic promotion effect on syngas production from sludge and EFB in supercritical water. This enhancement might be due to the dissolution of alkali metals from EFB and the adjustment of organic ratio. In addition, higher percentage of heavy metals were deposited and stabilized in the solid residue after SCWG. The leaching concentration of heavy metals from the solid residues was decreased to a level below the standard limit which enables it to be safely disposed of in landfill. In conclusion, the EFB addition has been proved to promote syngas production,as well as, stabilize the heavy metal in solid residues during co-SCWG.
文摘Lignocellulosic materials are promising alternative feedstocks for bioethanol production. However, the recalcitrant nature of lignocellulosic biomass necessitates an efficient pretreatment pretreatment step to improve the yield of fermentable sugars and maximizing the enzymatic hydrolysis efficiency. Microwave pretreatment may be a good alternative as it can reduce the pretreatment time and improve the enzymatic activity during hydrolysis. The overall goal of this paper is to expand the current state of knowledge on microwave-based pretreatment of lignocellulosic biomass and microwave assisted enzymatic reaction or Microwave Irradiation-Enzyme Coupling Catalysis (MIECC). In the present study, a comparison of microwave assisted alkali pretreatment was tried using Oil Palm empty fruit bunch. The microwave assisted alkali pretreatment of EFB using NaOH, significantly improved the enzymatic saccharification of EFB by removing more lignin and hemicellulose and increasing its accessibility to hydrolytic enzymes. The results showed that the optimum pretreatment condition was 3% (w/v) NaOH at 180 W for 12 minutes with the optimum component loss of lignin and holocellulose of about 74% and 24.5% respectively. The subsequent enzymatic saccharification of EFB pretreated by microwave assisted NaOH (3% w/v);resulted in 411 mg of reducing sugar per gram EFB at cellulose enzyme dosage of 20 FPU. The overall enhancement by the microwave treatment during the microwave assisted alkali pretreatment and microwave assisted enzymatic hydrolysis was 5.8 fold. The present study has highlighted the importance of well controlled microwave assisted enzymatic reaction to enhance the overall reaction rate of the process.
文摘Copper nanoparticles were impregnated onto oil palm empty fruit bunch (EFB) powders via in-situ sol-gel method. The impregnation and interfacial interaction of copper nanoparticles with EFB were analysed by fourier transformed infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and atomic force microscopy (AFM). The interaction of copper nanoparticles with the surface functional groups of EFB powders was identified by FTIR analysis. The peak shift of O-H and C-O functional groups indicated the interaction between EFB and copper nanoparticles. Besides that, XRD and EDX analysis confirmed the formation of copper nanoparticles on EFB powder. Due to the copper impregnation, the crystallinity of the EFB was increased as shown by XRD. The particles size of nanoparticles was analysed via TEM and AFM where the sizes were in the range of 60 - 100 nm. These findings strongly suggest that, copper nanoparticles impregnated EFB powders can be synthesized via in- situ sol gel method.
文摘Indonesia is the most producer of crude palm oil (CPO) worldwide with production more that 25 million tons in 2013. Through increasing production of CPO the wastes generated are growing up as well. The empty fruit bunch of oil palm (EFB) is one of the solid waste (biomass) which is generated at the palm oil mill. Its amount is equivalent to the CPO production, but only about 50% of its weight are good fibers for further usage as industrial raw material. The EFB fiber consists an interesting honey comb/lightweight structure. By mixing the EFB natural fiber with bio binding agent based on potato the environmental friendly materials (biocomposites) can be produced which are 100% biodegadrable. The biocomposites with 2 mm thickness have strengthness about 7 GPa according to the 3 points bending test standard of DIN 53 457. After coating process the environmental friendly lightweight materials with density less than 0.4 g/cm3 will be ready to be implemented for different technical applications.
文摘This work investigated the bio-oil production from oil palm empty fruit bunch (EFB) by continuous pyrolysis reactor under nitrogen and steam atmospheres as sweeping gas. The study parameters were particle size, biomass feeding rate, reactor temperature, and reactor sweeping gas. The EFB particle ranges were below 500 micrometers, between 500 - 1180 micrometers and 1180 - 2230 micrometers. Feeding rates were 150, 350, and 550 rpm. Both factors were analyzed by single factor ANOVA. Additionally, Box-Behnken design was used to investigate temperature (350oC - 600oC) under the following nitrogen and steam flow rates as sweeping gas: 0, 100, and 200 cm3/min of nitrogen and 0, 9, and 18 cm3/min of steam. The mathematical model from Box-Behnken design succeeded in predicting the optimal conditions for normal and nitrogen atmospheres. A particle size below 1180 μm was determined to be optimal for bio-oil production. In a normal atmosphere or no sweeping gas, the condition was 475oC and 450 rpm of feed rate. The optimal condition for nitrogen atmosphere was 530oC, 450 rpm of feed rate, and 200 cm3/min of nitrogen flow rate. However, steam as sweeping gas caused high uncertainty and the model was unable to predict the optimal conditions accurately. The biooils from normal, nitrogen, steam, and mixed atmospheres were analyzed for general characteristics. NMR and GC-MS were used to analyze chemical compositions in the bio-oils. Relationships between physical and chemical characteristics were determined and discussed.
文摘The existing mechanized oil palm harvester is claimed to be unsuccessful due to its inefficiency to harvest Fresh Fruit Bunch(FFB).It takes a lot of time compared to the conventional harvesting method,using human power.Therefore a study was carried out using Denavit and Hartenberg(D-H)approach to automate the five Degrees of Freedom(DOF)harvester manipulator.The general objective was to reduce the number of workers required for harvesting as well as to provide comfortable ergonomic for the operator of oil palm harvester.The D-H’s convention was used for selecting frames of reference in robotics application which has become the standard way of representing robots and modeling their motions.In this study,the forward kinematics and inverse kinematics were used to deduce joint angles variables while the conventional Jacobian was used for motion velocity computation.The formulated inverse equations were tested manually on the harvester with given locations to obtain deduced joint angles.The results were θ_(1)=129.64°,θ_(3)=180°,θ_(4)=90°,which were quite accurate.Thus,the kinematics analysis of harvester arm automation was done successfully.
文摘Composite materials from oil palmfiber enhance sustainability by utilizing renewable resources,reducing depen-dence on non-renewable materials,and lessening environmental impact.Despite their mechanical and dimen-sional stability limitations,oil palmfiber-based polymer composites offer significant advantages,such as natural abundance,potential weight reduction,and cost-effectiveness due to local availability and renewability.The growing interest in oil palm hybrid composites,made from blending differentfibers,is due to their custo-mizable mechanical and physical properties.Hybridization is one of the most effective methods to reinforce and improve the performance of oil palm-derived composite materials.This review investigates the structural qualities of hybrid composites made from oil palmfibers,their suitability for diverse applications,and recent advancements in thefield.By focusing on the availability,properties,applications,challenges,and future direc-tions of oil palmfiber hybrid composites,this review highlights the potential of these materials to enhance mechanical and functional properties,thereby contributing to sustainable development and innovation in com-posite materials.
基金This work was also supported by the Project“Development,Properties,and Application of Eco-Friendly Wood-Based Composites”,No.HИC-Б-1145/04.2021,carried out at the University of Forestry,Sofia,Bulgaria.The authors would like to acknowledge the Fundamental Research Grant Scheme(FRGS 2018-1)Reference Code:FRGS/1/2018/WAB07/UPM/1 provided by the Ministry of Higher Education,Malaysia.
文摘Black liquor is obtained as a by-product of the pulping process,which is used to convert biomass into pulp by removing lignin,hemicelluloses and other extractives from wood to free cellulose fibers.Lignin represents a major constituent in black liquor,with quantities varying from 20%to 30%,of which a very low share is used for manufacturing value-added products,while the rest is mainly burned for energy purposes,thus underestimating its great potential as a raw material.Therefore,it is essential to establish new isolation and extraction methods to increase lignin valorization in the development of bio-based chemicals.The aim of this research work was to determine the effect of KOH or ethanol concentration as an isolation agent on lignin yields and the chemical characteristics of lignin isolated from formacell black liquor of oil palm empty fruit bunch(OPEFB).Isolation of lignin was carried out using KOH with various concentrations ranging from 5%to 15%(w/v).Ethanol was also used to precipitate lignin from black liquor at concentrations varying from 5%to 30%(v/v).The results obtained showed that the addition of KOH solution at 12.5%and 15%concentrations resulted in better lignin yield and chemical properties of lignin,i.e.,pH values of 3.86 and 4.27,lignin yield of 12.78%and 14.95%,methoxyl content of 11.33%and 10.13%,and lignin equivalent weights of 476.25 and 427.03,respectively.Due to its phenolic structure and rich functional groups that are favorable for modifications,lignin has the potential to be used as a green additive in the development of advanced biocomposite products in various applications to replace current fossil fuel-based material,ranging from fillers,fire retardants,formaldehyde scavengers,carbon fibers,aerogels,and wood adhesives.
文摘The oil palm leaf miner, Coelaenomenodera lameensis, is currently the most destructive pest of oil palm in Ghana and other African oil palm growing countries, causing significant losses in fresh fruit bunch yield. Progressive pruning is an oil palm pruning method in which pruning is done at the same time as fresh fruit bunch harvesting. This study evaluated the impact of progressive pruning on leaf miner population in oil palm and how these two factors (leaf miner and progressive pruning) affect the yield of oil palm at the Benso Oil Palm Plantation Public listed company (BOPP. Plc). Five distinct blocks in the plantation were selected for observations on fronds at various ranks (33, 25, or 17) based on the degree of defoliation by counting the number of pests on leaflets at different phases of insect development. Fronds from selected plots were sampled in a Completely Randomized Design (CRD). The size of plots used for the study ranged between 19 to 45 hectares. A minimum of 78 fronds were evenly cut from each block for pest count depending on the block size. Secondary data on annual yields of fresh fruit bunches before and after the introduction of progressive pruning were also obtained from BOPP. Plc records from 2011-2020. The results from the analyzed data on leaf miner index before and after the introduction of progressive pruning showed that progressive pruning has, to a high extent (64% to 36%), reduced leaf miner populations in the plantation. Paired t-test on fresh fruit bunch yield has also revealed a significant (p < 0.001) increase in annual fresh fruit bunch yield due to progressive pruning. A regression analysis, however, revealed a lower rate of yield loss (3.05 to 2.70 tonnes) to leaf miner infestation after the introduction of progressive pruning. The study recommends progressive pruning as a key cultural practice for improving crop yields in leaf miner prone plantations.
基金Tenaga Nasional Berhad (Malaysia) for funding this research (TNBR/SF 240/2016)
文摘The effects of non-thermal plasma (NTP) treatment on biomass in the form of pulverized palmbased empty fruit bunches (EFB) are investigated. Specifically, this study investigates the effects of NTP treatment on the surface reactivity, morphology, oxygen-to-carbon (O/C) ratio of the EFB at varying treatment times. The surface reactivity is determined by the reaction of antioxidant functional groups or reactive species with 2,2-diphenyl-l-picrylhydrazyl (DPPH). By measuring the concentration of the DPPH with a spectrophotometer, the change in the amount of antioxidant functional groups can be measured to determine the surface reactivity. The reactions of the various lignin components in the EFB with respect to the NTP treatment are discussed by qualitatively assessing the changes in the Fourier transform infrared (FTIR) spectra. The surface morphology is examined by a scanning electron microscope. To determine the amount of oxygen deposited on the EFB by the air-based NTP treatment, the oxygen and carbon contents are measured by an energy dispersive x-ray detector to determine the O/C ratio. The results show that the NTP reactor produced reactive species such as atomic oxygen and ozone, increasing the surface reactivity and chemical scavenging rate of the EFB. Consequently, the surface morphology changed, with an observed rougher surface from the images of the EFB samples. The change in the appearance of the surface is accompanied by a high O/C ratio, and is caused by reactions of certain components of lignin due to the NTP treatment, The lignin component that was modified is believed to be syringyl, as the syringyl portion in the lignin of EFBs is higher compared to the other components. Syringyl components are detected in the range of F-FIR wavenumbers of 1109-1363 cm-1. With increasing NTP treatment times, the absorbance (of the peaks in the PTIR spectra) for syringyl related C-H and lignin associated C=C bonds decreases as the syringyl decomposes. The resulting release of carboxyl compounds increases the absorbance for the carbonyl C=O group. The results show that NTP treatment is able to modify the surface properties of EFB, and that the surface reactivity can be increased to improve their conversion and processing efficiencies.