期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
The abscisic acid-responsive transcriptional regulatory module CsERF110-CsERF53 orchestrates citrus fruit coloration
1
作者 Quan Sun Zhengchen He +8 位作者 Di Feng Ranran Wei Yingzi Zhang Junli Ye Lijun Chai Juan Xu Yunjiang Cheng Qiang Xu Xiuxin Deng 《Plant Communications》 SCIE CSCD 2024年第11期157-172,共16页
Carotenoid biosynthesis is closely associated with abscisic acid(ABA)during the ripening process of non-climacteric fruits,but the regulatory mechanism that links ABA signaling to carotenoid metabolism remains largely... Carotenoid biosynthesis is closely associated with abscisic acid(ABA)during the ripening process of non-climacteric fruits,but the regulatory mechanism that links ABA signaling to carotenoid metabolism remains largely unclear.Here,we identified two master regulators of ABA-mediated citrus fruit coloration,CsERF110 and CsERF53,which activate the expression of carotenoid metabolism genes(CsGGPPS,CsPSY,CsPDS,CsCRTISO,CsLCYB2,CsLCYE,CsHYD,CsZEP,and CsNCED2)to facilitate carotenoid accumulation.Further investigations showed that CsERF110 not only activates the expression of CsERF53 by binding to its promoter but also interacts with CsERF53 to form the transcriptional regulatory module CsERF110-CsERF53.We also discovered a positive feedback regulatory loop between the ABA signal and carotenoid metabolism regulated by the transcriptional regulatory module CsERF110-CsERF53.Our results reveal that the CsERF110-CsERF53 module responds to ABA signaling,thereby orchestrating citrus fruit coloration.Considering the importance of carotenoid content for citrus and many other carotenoid-rich crops,the revelation of molecular mechanisms that underlie ABA-mediated carotenoid biosynthesis in plants will facilitate the development of transgenic/gene-editing approaches,further contributing to improving the quality of citrus and other carotenoid-rich crops. 展开更多
关键词 citrus abscisic acid ABA fruit coloration carotenoid metabolism ethylene responsive factor ERF transcriptional regulatory module
原文传递
A chromosome-level genome assembly for Chinese plum‘Wushancuili'reveals the molecular basis of its fruit color and susceptibility to rain-cracking 被引量:1
2
作者 Kun Zhou Jingwen Wang +8 位作者 Lin Pan Fang Xiang Yi Zhou Wei Xiong Ming Zeng Donald Grierson Wenbin Kong Lingyu Hu Wanpeng Xi 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第3期672-688,共17页
Chinese plum(Prunus salicina Lindl.)originates from China and makes a large contribution to the global production of plums.The P.salicina‘Wushancuili'has a green coloration and high fruit quality and is economica... Chinese plum(Prunus salicina Lindl.)originates from China and makes a large contribution to the global production of plums.The P.salicina‘Wushancuili'has a green coloration and high fruit quality and is economically important in eliminating poverty and protecting ecology in the Yangtze River Three Gorges Reservoir.However,rain-induced cracking(rain-cracking,literally skin cracking caused by rain)is a limitation to‘Wushancuili'fruit production and causes severe losses.This study reported a high-quality‘Wushancuili'genome assembly consisting of a 302.17-Mb sequence with eight pseudo-chromosomes and a contig N50 of 23.59 Mb through the combination of Illumina sequencing,Pacific Biosciences HiFiⅢsequencing,and high-throughput chromosome conformation capture technology.A total of 25109 protein-coding genes are predicted and 54.17%of the genome is composed of repetitive sequences.‘Wushancuili'underwent a remarkable orthoselection during evolution.Gene identification revealed that loss-of-function in four core MYB10 genes results in the anthocyanin deficiency and absence of red color,revealing the green coloration due to the residual high chlorophyll in fruit skin.Besides,the occurrence of cracking is assumed to be closely associated with cell wall modification and frequently rain-induced pathogen enrichment through transcriptomic analysis.The loss of MYB10 genes might render fruit more susceptible to pathogen-mediated cracking by weakening the epidermal strength and reactive oxygen species(ROS)scavenging.Our findings provided fundamental knowledge regarding fruit coloration and rain-cracking and will facilitate genetic improvement and cultivation management in Chinese plums. 展开更多
关键词 Chinese plum fruit coloration fruit epidermis Genome MYB10 Rain-cracking
下载PDF
Insights into flavonoid biosynthesis during cucumber fruit peel coloration based on metabolite profiling and transcriptome analyses 被引量:3
3
作者 Shuying He Yi Ye +5 位作者 Ying Yuan Mai Lv Meixing Wang Qiang Xu Xuewen Xu Xuehao Chen 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第4期763-776,共14页
The fruit peel color is a crucial trait of cucumber.To better understand the molecular mechanisms underlying cucumber peel coloration,we compared the UPLC-ESI-MS/MS-based flavonoid metabolomic and RNA sequencing-based... The fruit peel color is a crucial trait of cucumber.To better understand the molecular mechanisms underlying cucumber peel coloration,we compared the UPLC-ESI-MS/MS-based flavonoid metabolomic and RNA sequencing-based transcriptomic profiling of the brown peeled cucumber line‘PW’at six developmental stages.A total of 210 flavonoid metabolites were identified.Of which,117 flavonoid metabolites were differentially accumulated.In this study,weighted gene co-expression network analysis combined with Kyoto Encyclopedia of Gene and Genomes enrichment analysis revealed key genes coding for seven enzymes and eight transcription factors(TFs)associated with flavonoid biosynthesis.Among them,the R2R3MYB CsaV3_4G001130 is the best candidate gene that is responsible for controlling mature fruit colors in cucumber.Sanger sequencing revealed one nonsynonymous SNP in the exon of CsaV3_4G001130 among the selected 11 cucumber lines,which introduced a premature stop codon,generating a truncated protein in pale yellow or creamy peeled fruits.Yeast two-hybrid assays showed a direct interaction of CsaV3_4G001130 with the bHLH TF CsaV3_1G002260 and the WD40 protein CsaV3_5G001800.However,the interactions were influenced by the nonsynonymous SNP we identified.Our finding revealed that the integrated transcriptome and metabolome analysis further demonstrated that the abundance of some pigmented flavonoids(especially anthocyanins and chalcones)contributed to the coloration of‘PW’fruits.These findings pave the way for elucidation of flavonoid biosynthesis and improvement of cucumber peel color in the future. 展开更多
关键词 CUCUMBER fruit peel coloration Transcriptome METABOLOME MYB
下载PDF
A novel histone methyltransferase gene Cg SDG40 positively regulates carotenoid biosynthesis during citrus fruit ripening
4
作者 Jialing Fu Qingjiang Wu +4 位作者 Xia Wang Juan Sun Li Liao Li Li Qiang Xu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第8期2633-2648,共16页
The flesh color of pummelo(Citrus maxima)fruits is highly diverse and largely depends on the level of carotenoids,which are beneficial to human health.It is vital to investigate the regulatory network of carotenoid bi... The flesh color of pummelo(Citrus maxima)fruits is highly diverse and largely depends on the level of carotenoids,which are beneficial to human health.It is vital to investigate the regulatory network of carotenoid biosynthesis to improve the carotenoid content in pummelo.However,the molecular mechanism underlying carotenoid accumulation in pummelo is not fully understood.In this study,we identified a novel histone methyltransferase gene,CgSDG40,involved in carotenoid regulation by analyzing the flesh transcriptome of typical white-fleshed pummelo,red-fleshed pummelo and extreme-colored F1 hybrids from a segregated pummelo population.Expression of CgSDG40 corresponded to flesh color change and was highly coexpressed with CgPSY1.Interestingly,CgSDG40 and CgPSY1 are located physically adjacent to each other on the chromosome in opposite directions,sharing a partially overlapping promoter region.Subcellular localization analysis indicated that CgSDG40 localizes to the nucleus.Overexpression of CgSDG40 significantly increased the total carotenoid content in citrus calli relative to that in wild type.In addition,expression of CgPSY1 was significantly activated in overexpression lines relative to wild type.Taken together,our findings reveal a novel histone methyltransferase regulator,CgSDG40,involved in the regulation of carotenoid biosynthesis in citrus and provide new strategies for molecular design breeding and genetic improvement of fruit color and nutritional quality. 展开更多
关键词 PUMMELO SET domain protein epigenetic regulation PSY1 LYCOPENE fruit quality fruit color
下载PDF
Modeling Study of Fruit Morphological Formation in Melon
5
作者 CHANG Li-ying NIU Qing-liang MIAO Yu-bin HE San-peng CUI Chong HUANG Dan-feng 《Agricultural Sciences in China》 CAS CSCD 2011年第5期714-720,共7页
Modeling of fruit morphological formation in melon is important for realizing virtual and digital plant growth.The objective of this study was to characterize the changes in patterns of fruit growth characters during ... Modeling of fruit morphological formation in melon is important for realizing virtual and digital plant growth.The objective of this study was to characterize the changes in patterns of fruit growth characters during plant development.In cultivar experiments,a high-resolution wireless vision sensor network has been developed to realize non-contact automatic uninterrupted measurement of the fruit shape micro-change (fruit size,color,and net).Results showed that the fruit swelling process (vertical and horizontal diameters) exhibited a slow-rapid-slow pattern,which could be well described with a logistic curve against growing degree days (GDD);fruit color changes based on the RGB values could be represented by quadratic relationship to cumulative GDD;the fruit net changes over growth progress could be partitioned into three phases according to the time interval.The first phase was from 1 to 30 days after pollination (DAP),in which the vertical stripe appeared at fruit middle part and the horizontal stripe at fruit petiole and hilum part as well;the second phase was from 30 to 40 DAP,the horizontal stripe occurred at fruit middle part and the net was formed;the third phase was the process started from 40 DAP,the netted breadth and thickness were gradually increased.The model was validated with the independent data from the experiment,and the mean RMSE (root mean square error) of fruit were 0.36 and 0.28 cm for vertical and horizontal diameters,11.9 for fruit color,and 0.45 cm for stripe length and diameter at varied GDD,respectively.This work is beneficial to a reliable foundation for study the relationship between morphological formation and physiological change of the melon fruit internally and then realize the intelligent precision management to improve the yield and quality of greenhouse melon production. 展开更多
关键词 melon (Cucumis melo L.) morphological formation model fruit diameter fruit color fruit net growing degreedays (GDD)
下载PDF
Tissue differential expression of lycopene β-cyclase gene in papaya 被引量:8
6
作者 Rachel L Skelton Qingyi Yu +3 位作者 Rajeswari Srinivasan Richard Manshardt Paul H Moore Ray Ming 《Cell Research》 SCIE CAS CSCD 2006年第8期731-739,共9页
Carotene pigments in flowers and fruits are distinct features related to fitness advantages such as attracting insects forpollination and birds for seed dispersal.In papaya,the flesh color of the fruit is considered a... Carotene pigments in flowers and fruits are distinct features related to fitness advantages such as attracting insects forpollination and birds for seed dispersal.In papaya,the flesh color of the fruit is considered a quality trait that correlateswith nutritional value and is linked to shelf-life of the fruit.To elucidate the carotenoid biosynthesis pathway in papaya,we took a candidate gene approach to clone the lycopene β-cyclase gene,LCY-B.A papaya LCY-B ortholog,cpLCY-B,was successfully identified from both cDNA and bacterial artificial chromosome(BAC)libraries and complete genomicsequence was obtained from the positive BAC including the promoter region.This cpLCY-B shared 80% amino acididentity with citrus LCY-B.However,full genomic sequences from both yellow- and red-fleshed papaya were identical.Quantitative real-time PCR(qPCR)revealed similar levels of expression at six different maturing stages of fruits forboth yellow-and red-fleshed genotypes.Further expression analyses of cpLCY-B showed that its expression levels wereseven- and three-fold higher in leaves and,respectively,flowers than in fruits,suggesting that cpLCY-B is down-regulatedduring the fruit ripening process. 展开更多
关键词 Carica papaya fruit flesh color lycopene β-cyclase
下载PDF
Inter-specific and intra-specific variability in fruit color preference in two species of Turdus 被引量:1
7
作者 Asier R.LARRINAGA 《Integrative Zoology》 SCIE CSCD 2011年第3期244-258,共15页
One of the main hypotheses proposed to explain the evolution of fruit color deals with a preference of avian frugivores for specific colors,mainly black and red,which are the most common fruit colors in many of the st... One of the main hypotheses proposed to explain the evolution of fruit color deals with a preference of avian frugivores for specific colors,mainly black and red,which are the most common fruit colors in many of the studied habitats.I analyzed fruit color preferences by wild birds belonging to 2 species of the highly frugivorous genus Turdus(Eurasian Blackbird Turdus merula Linnaeus,1758 and Redwing Turdus iliacus Linnaeus,1758)by means of captivity experiments with artificial fruits.Despite important within-individual(i.e.temporal)and among-individual variability,consistent patterns of species-specific color preferences emerged.Eurasian Blackbirds tended to prefer red over blue,green and black,whereas Redwings seemed to prefer black over the rest.Green was systematically avoided by both species,suggesting that it might signal unripeness of fruits.Both preferred colors have been previously reported as the most common among fleshy-fruited plants.The high variability,both within and between individuals,in preferences suggests that they can be subject to changes through experience and learning and,therefore,are not likely to drive the evolution of fruit color.The main differences between both species could be related to the most common fruit color they fed upon during the last months before capture. 展开更多
关键词 artificial fruits frugivorous birds fruit color preference fruit spectra intra-specific variability
原文传递
Genetic diversity and offspring fitness in the red and white fruit color morphs of the wild strawberry Fragaria pentaphylla
8
作者 Lu-Xi Chen Su-Ting Xu +2 位作者 Wei-Hang Ding Jun-Min Li Peter Alpert 《Journal of Plant Ecology》 SCIE CSCD 2020年第1期36-41,共6页
Aims Fruit color polymorphisms are widespread in plants,but what maintains them is largely unclear.One hypothesis is that some morphs are preferred by dispersers while others have higher pre-or postdispersal fitness.T... Aims Fruit color polymorphisms are widespread in plants,but what maintains them is largely unclear.One hypothesis is that some morphs are preferred by dispersers while others have higher pre-or postdispersal fitness.This leads to the prediction that fruit color morphs will differ in pre-or postdispersal fitness.Methods We compared genetic and clonal diversity,mating system,morphological traits that might be associated with resistance to freezing,and germination,survival and seed production of progeny of the red and white fruit morphs in a population of a diploid,wild strawberry,Fragaria pentaphylla,from south-central China.Important Findings The red morph was much more abundant than the white but did not show higher genetic diversity as measured by observed and effective numbers of alleles,Shannon information index,or expected or observed heterozygosities.AMOVA showed that most of the genetic variation in the population was within rather than between morphs.Morphs did not differ in mating system parameters,and no significant biparental inbreeding was found in either morph.Gene flow between two morphs was high(N_(m)=6.89).Seeds of the red morph germinated about 2 days earlier and had a 40%higher rate of germination than those of the white morph,but survival of seedlings and seed production by surviving offspring did not differ between morphs.The whole postdispersal fitness of the red morph was about two times higher than that of the white morph.Red morphs had hairier petioles but not more surface wax on leaves.Overall,results showed partial evidence for difference in pre-and postdispersal fitness between fruit color morphs in F.pentaphylla.Differences in fitness independent of dispersal may thus partially account for fruit color polymorphism in all cases. 展开更多
关键词 Fragaria pentaphylla fruit color polymorphism genetic diversity mating system south-central China
原文传递
An ACCUMULATION AND REPLICATION OF CHLOROPLASTS 5 gene mutation confers light green peel in cucumber 被引量:9
9
作者 Qian Zhou Shenhao Wang +3 位作者 Bowen Hu Huiming Chen Zhonghua Zhang Sanwen Huang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2015年第11期936-942,共7页
The peel color of fruit is an important commercial trait in cucumber, but the underlying molecular basis is largely unknown. A mutant showing light green exocarp was discovered from ethyl methane sulfonate (EMS) mut... The peel color of fruit is an important commercial trait in cucumber, but the underlying molecular basis is largely unknown. A mutant showing light green exocarp was discovered from ethyl methane sulfonate (EMS) mutagenized cucumber line 406 with dark green exocarp. Genetic analysis showed the mutant phenotype is conferred by a single recessive gene, here designated as lgp (light green peel). By re-sequencing of bulked segregants, we identified the candidate gene Csa7Go51430 encoding ACCUMULATION AND REPLICATION OF CHLOROPLASTS 5 (ARCS) that plays a vital role in chloroplast division in Arabidopsis. A single nucleotide polymorphism (SNP) causing amino acid alteration in the conserved GTPase domain of Csa7Go5143o showed co-segregation with the altered phenotype. Furthermore, the transient RNA interference of this gene resulted in reduced number and enlarged size of chloroplasts, which were also observed in the Igp mutant. This evidence supports that the non-synonymous SNP in Csa7G051430 is the causative mutation for the light green peel. This study provides a new allele for cucumber breeding for light green fruits and additional resource for the study of chloroplast development. 展开更多
关键词 ARCS Cucumis sativus ethyl methane sulfonate mutant fruit peel color whole genome re-sequencing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部