A zero-dimensional single-zone double-curve model is presented to predict fuel burning rate in stratified charge engines, and it is integrated with GT-Power to predict the overall performance of the stratified charge ...A zero-dimensional single-zone double-curve model is presented to predict fuel burning rate in stratified charge engines, and it is integrated with GT-Power to predict the overall performance of the stratified charge engines. The model consists of two exponential functions for calculating the fuel burning rate in different charge zones. The model factors are determined by a non-linear curve fitting technique, based on the experimental data obtained from 30 cases in middle and low loads. The results show good agreement between the measured and calculated cylinder pressures, and the deviation between calculated and measured cylinder pressures is less than 5%. The zerodimensional single-zone double-curve model is successful in the combustion modeling for stratified charge engines.展开更多
Thorium as a suitable fertile with higher natural resources in comparison with uranium resources has been remarkably considered by different nuclear energy user countries in the last decades. Its prominent features su...Thorium as a suitable fertile with higher natural resources in comparison with uranium resources has been remarkably considered by different nuclear energy user countries in the last decades. Its prominent features such as suitable possibility for power flattening of a nuclear reactor, applicable breeder blanket to produce^(233)U fissile as well as neutron leakage prevention from a nuclear core has caused its application as power flatter, breeder material or other aimed utilizations be evaluated by the researches. In the present study, neutronics of a modeled CANDU 6loaded with Th O_2 and UO_2fuel rods have been computationally studied. The study aimed at reprocessing of burned Th O_2 seeds at CANDU 6 reactor to recover the total produced uranium, which is to be going under another compound fuel cycle. The obtained results showed all the core reactivity coefficients are sufficiently negative. The modeled core 949 GWd burn-up concluding in 99.99 %depletion of^(235)U initial loads. 18.38 kg of^(233) U was produced in the burnt Th O_2 fuel after 1-year burn-up time. In addition, 31.84 kg of^(239) Pu was produced in the UO_2 spent fuel rods after the burn-up time. After a proposed cooling time, about 50.01 kg of^(233)U will be available in the spent Th O_2 fuel.展开更多
基金Supported by National Natural Science Foundation of China ( No. 50576064)Youth Foundation of Tianjin University (No. W50201).
文摘A zero-dimensional single-zone double-curve model is presented to predict fuel burning rate in stratified charge engines, and it is integrated with GT-Power to predict the overall performance of the stratified charge engines. The model consists of two exponential functions for calculating the fuel burning rate in different charge zones. The model factors are determined by a non-linear curve fitting technique, based on the experimental data obtained from 30 cases in middle and low loads. The results show good agreement between the measured and calculated cylinder pressures, and the deviation between calculated and measured cylinder pressures is less than 5%. The zerodimensional single-zone double-curve model is successful in the combustion modeling for stratified charge engines.
文摘Thorium as a suitable fertile with higher natural resources in comparison with uranium resources has been remarkably considered by different nuclear energy user countries in the last decades. Its prominent features such as suitable possibility for power flattening of a nuclear reactor, applicable breeder blanket to produce^(233)U fissile as well as neutron leakage prevention from a nuclear core has caused its application as power flatter, breeder material or other aimed utilizations be evaluated by the researches. In the present study, neutronics of a modeled CANDU 6loaded with Th O_2 and UO_2fuel rods have been computationally studied. The study aimed at reprocessing of burned Th O_2 seeds at CANDU 6 reactor to recover the total produced uranium, which is to be going under another compound fuel cycle. The obtained results showed all the core reactivity coefficients are sufficiently negative. The modeled core 949 GWd burn-up concluding in 99.99 %depletion of^(235)U initial loads. 18.38 kg of^(233) U was produced in the burnt Th O_2 fuel after 1-year burn-up time. In addition, 31.84 kg of^(239) Pu was produced in the UO_2 spent fuel rods after the burn-up time. After a proposed cooling time, about 50.01 kg of^(233)U will be available in the spent Th O_2 fuel.