Development of inexpensive non Pt based high electrocatalytic energy materials is the need of the hour for fuel cell electrode to produce clean alternative green energy from synthesized bio alcohol using biomass. MnO ...Development of inexpensive non Pt based high electrocatalytic energy materials is the need of the hour for fuel cell electrode to produce clean alternative green energy from synthesized bio alcohol using biomass. MnO 2,electro synthesized at different current density is found to be well performed electrocatalytic material,comparable to Pt,with higher current density,very lowovervoltage for the electrochemical oxidation of methanol. From EIS study,the polarization resistance of the coated MnO 2is found to be much lowand electrical double layer capacitance is high,the effect increases with increase in current density of electro deposition. XRD,EDX and AAS analysis confirm the M nO 2deposition. The morphology of SEM images exhibits an enhanced 3D effective substrate area,for electro oxidation of the fuel. A fewnano structured grains of the deposited M nO 2is also observed at higher current density. The fact supports that a high energetic inexpensive electro catalytic material has been found for fuel cell electrode to synthesis renewable energy from methanol fuel.展开更多
文摘Development of inexpensive non Pt based high electrocatalytic energy materials is the need of the hour for fuel cell electrode to produce clean alternative green energy from synthesized bio alcohol using biomass. MnO 2,electro synthesized at different current density is found to be well performed electrocatalytic material,comparable to Pt,with higher current density,very lowovervoltage for the electrochemical oxidation of methanol. From EIS study,the polarization resistance of the coated MnO 2is found to be much lowand electrical double layer capacitance is high,the effect increases with increase in current density of electro deposition. XRD,EDX and AAS analysis confirm the M nO 2deposition. The morphology of SEM images exhibits an enhanced 3D effective substrate area,for electro oxidation of the fuel. A fewnano structured grains of the deposited M nO 2is also observed at higher current density. The fact supports that a high energetic inexpensive electro catalytic material has been found for fuel cell electrode to synthesis renewable energy from methanol fuel.