Thermodynamic characteristics are of great importance for the performance of a high-temperature flow-rate control valve,as high-temperature environment may bring problems,such as blocking of spool and increasing of le...Thermodynamic characteristics are of great importance for the performance of a high-temperature flow-rate control valve,as high-temperature environment may bring problems,such as blocking of spool and increasing of leakage,to the valve.In this paper,a high-temperature flow-rate control valve,pilot-controlled by a pneumatic servo system is developed to control the fuel supply for scramjet engines.After introducing the construction and working principle,the thermodynamic mathematical models of the valve are built based on the heat transfer methods inside the valve.By using different boundary conditions,different methods of simulations are carried out and compared.The steady-state and transient temperature field distribution inside the valve body are predicted and temperatures at five interested points are measured.By comparing the simulation and experimental results,a reasonable 3D finite element analysis method is suggested to predict the thermodynamic characteristics of the high-temperature flow-rate control valve.展开更多
Combustion characteristics in a scramjet combustor equipped with a thin strut were observed and discussed in this paper.A series of numerical simulations were carried out under different flight dynamic pressure condit...Combustion characteristics in a scramjet combustor equipped with a thin strut were observed and discussed in this paper.A series of numerical simulations were carried out under different flight dynamic pressure conditions.The parameters of cold flow field and combustion field were used to analyze the combustion characteristics.Based on the basic data,the mixing efficiency,characteristics of flame establishment and propagation as well as combustion field characteristics were discussed in this paper.The influence laws of lower dynamic pressure conditions were further revealed to optimize combustor performance.Results indicated that properly reducing the flight dynamic pressure can enhance the mixing of kerosene.The diffusion of kerosene determined the distribution of combustion zone and heat release.Then,the influencing factor that affected the chemical reaction rate was revealed to shorten chemical reaction time.And the higher flight Mach number made the flame propagation velocity faster and the combustion stability stronger.The fuel mixing became the main factor and low dynamic pressure had little effect on laminar flame propagation velocity under high Mach number conditions.The investigations in this paper are helpful for understanding the combustion characteristics under low dynamic pressure conditions.展开更多
Coherent jets are widely used in electric are furnace (EAF) steelmaking to increase the oxygen utilization and chemical reaction rates. However, the influence of fuel gas combustion on jet behavior is not fully unde...Coherent jets are widely used in electric are furnace (EAF) steelmaking to increase the oxygen utilization and chemical reaction rates. However, the influence of fuel gas combustion on jet behavior is not fully understood yet. The flow and combustion characteristics of a coherent jet were thus investigated at steelmaking temperature using Fluent software, and a detailed chemical kinetic reaction mecha- nism was used in the combustion reaction model. The axial velocity and total temperature of the supersonic jet were measured via hot state experiments. The simulation results were compared with the experimental data and the empirical jet model proposed by Ito and Muchi and good consistency was obtained. The research results indicated that the potential core length of the coherent jet can be prolonged by optimizing the combustion effect of the fuel gas. Besides, the behavior of the supersonic jet in the subsonic section was also investigated, as it is an important factor for controlling the position of the oxygen lance. The investigation indicated that the attenuation of the coherent jet is more notable than that of the conventional jet in the subsonic section.展开更多
文摘Thermodynamic characteristics are of great importance for the performance of a high-temperature flow-rate control valve,as high-temperature environment may bring problems,such as blocking of spool and increasing of leakage,to the valve.In this paper,a high-temperature flow-rate control valve,pilot-controlled by a pneumatic servo system is developed to control the fuel supply for scramjet engines.After introducing the construction and working principle,the thermodynamic mathematical models of the valve are built based on the heat transfer methods inside the valve.By using different boundary conditions,different methods of simulations are carried out and compared.The steady-state and transient temperature field distribution inside the valve body are predicted and temperatures at five interested points are measured.By comparing the simulation and experimental results,a reasonable 3D finite element analysis method is suggested to predict the thermodynamic characteristics of the high-temperature flow-rate control valve.
基金supported by the National Natural Science Foundation of China(Grants No.12102110).
文摘Combustion characteristics in a scramjet combustor equipped with a thin strut were observed and discussed in this paper.A series of numerical simulations were carried out under different flight dynamic pressure conditions.The parameters of cold flow field and combustion field were used to analyze the combustion characteristics.Based on the basic data,the mixing efficiency,characteristics of flame establishment and propagation as well as combustion field characteristics were discussed in this paper.The influence laws of lower dynamic pressure conditions were further revealed to optimize combustor performance.Results indicated that properly reducing the flight dynamic pressure can enhance the mixing of kerosene.The diffusion of kerosene determined the distribution of combustion zone and heat release.Then,the influencing factor that affected the chemical reaction rate was revealed to shorten chemical reaction time.And the higher flight Mach number made the flame propagation velocity faster and the combustion stability stronger.The fuel mixing became the main factor and low dynamic pressure had little effect on laminar flame propagation velocity under high Mach number conditions.The investigations in this paper are helpful for understanding the combustion characteristics under low dynamic pressure conditions.
基金support by the National Natural Science Foundation of China(NSFC 51474024and 51334001)National Key Technology Research and Development Program of the 12th Five-year Plan of China(12FYP 2015BAF03B01)
文摘Coherent jets are widely used in electric are furnace (EAF) steelmaking to increase the oxygen utilization and chemical reaction rates. However, the influence of fuel gas combustion on jet behavior is not fully understood yet. The flow and combustion characteristics of a coherent jet were thus investigated at steelmaking temperature using Fluent software, and a detailed chemical kinetic reaction mecha- nism was used in the combustion reaction model. The axial velocity and total temperature of the supersonic jet were measured via hot state experiments. The simulation results were compared with the experimental data and the empirical jet model proposed by Ito and Muchi and good consistency was obtained. The research results indicated that the potential core length of the coherent jet can be prolonged by optimizing the combustion effect of the fuel gas. Besides, the behavior of the supersonic jet in the subsonic section was also investigated, as it is an important factor for controlling the position of the oxygen lance. The investigation indicated that the attenuation of the coherent jet is more notable than that of the conventional jet in the subsonic section.