The steady development of high-temperature gas-cooled reactors(HTRs) has increased the requirements for the production cost and quality of fuel elements. Green fuel element pressing is one of the key steps to increase...The steady development of high-temperature gas-cooled reactors(HTRs) has increased the requirements for the production cost and quality of fuel elements. Green fuel element pressing is one of the key steps to increase the production capacity. This paper proposes a proprietary vacuum dry-bag isostatic pressing(DIP) apparatus. The structural change of the matrix graphite powder during the DIP process was examined by analyzing the density change of the matrix graphite spheres with pressure. The soft molding process was simulated using the finite element method. The dimensional changes in the spheres during the pressing, carbonization, and purification stages were explored. The performance of the fuel matrix produced by the DIP method was comprehensively examined. The fuel matrix met the technical requirements and its anisotropy was significantly reduced. The DIP method can significantly improve both the production efficiency and quality of fuel elements. This will play a key role in meeting the huge demand for fuel elements of HTRs and molten salt reactors.展开更多
The HTR Fuel Element R & D Program,set in 1987,aims to develop the manufacturetechnology of HTR fuel element and to produce the fuel element for the first core of our 10MW experimental reactor.Now the work on labo...The HTR Fuel Element R & D Program,set in 1987,aims to develop the manufacturetechnology of HTR fuel element and to produce the fuel element for the first core of our 10MW experimental reactor.Now the work on laboratory scale is phased out.In this paper,the fuel element manufacture technology is described and the test results are given.展开更多
A new method for three-dimensional simulation of the interaction between the gas and the solid around is developed.The effects of the gas on the thermal-mechanical behaviors within the surrounded solid are performed b...A new method for three-dimensional simulation of the interaction between the gas and the solid around is developed.The effects of the gas on the thermal-mechanical behaviors within the surrounded solid are performed by replacing the internal gas with an equivalent solid in the modeling,which can make it convenient to simulate the thermal-mechanical coupling effects in the solid research objects with gases in them.The applied thermal expansion coefficient,Young's modulus and Poisson's ratio of the equivalent solid material are derived.A series of tests have been conducted;and the proposed equivalent solid method to simulate the gas effects is validated.展开更多
Pebble bed reactors use cycling scheme of spherical fuel elements relying on fuel elements cycling system (FECS). The structure and control logic of FECS are very complex. Each control link has strict requirements on ...Pebble bed reactors use cycling scheme of spherical fuel elements relying on fuel elements cycling system (FECS). The structure and control logic of FECS are very complex. Each control link has strict requirements on time and sequence. This increases the difficulties of description and analysis. In this paper, timed places control Petri nets (TPCPN) is applied for the modeling of FECS. On this basis the simulation of two important processes, namely uploading fuel elements into the core for the first time and emptying the core is finished by simulation software Arena. The results show that as TPCPN is able to describe different kinds of logic relationship and has time properties and control properties, it’s very suitable for the modeling and analysis of FECS.展开更多
The oxidation resistance of the matrix materials is vital to the normal operation of HTGR and is also an important parameter for evaluating the safety response under accidental air or water ingress conditions. The oxi...The oxidation resistance of the matrix materials is vital to the normal operation of HTGR and is also an important parameter for evaluating the safety response under accidental air or water ingress conditions. The oxidation kinetics of the three matrix material components: natural graphite, artificial graphite and resin carbon. was studied in a flowing gas mixture of oxygen and nitrogen using an auto thermogravimetric system. The results indicate that the artificial graphite has the slowest oxidation rate followed by the natural graphite and then the resin carbon with the highest oxidation rate. Vacuum heat treatment of the natural graphite at 1950℃ decreases the impurities and increases the oxidation activation energy. Differences between the activation energy and the oxidation rate of the resin carbon heat treated at 1950℃ and 1600℃ resulted from changes in the micro-pore texture. and the reduction of impurities.展开更多
基金supported by the National S&T Major Project (No.ZX06901)。
文摘The steady development of high-temperature gas-cooled reactors(HTRs) has increased the requirements for the production cost and quality of fuel elements. Green fuel element pressing is one of the key steps to increase the production capacity. This paper proposes a proprietary vacuum dry-bag isostatic pressing(DIP) apparatus. The structural change of the matrix graphite powder during the DIP process was examined by analyzing the density change of the matrix graphite spheres with pressure. The soft molding process was simulated using the finite element method. The dimensional changes in the spheres during the pressing, carbonization, and purification stages were explored. The performance of the fuel matrix produced by the DIP method was comprehensively examined. The fuel matrix met the technical requirements and its anisotropy was significantly reduced. The DIP method can significantly improve both the production efficiency and quality of fuel elements. This will play a key role in meeting the huge demand for fuel elements of HTRs and molten salt reactors.
基金the High Technology Research and Development Programme of china
文摘The HTR Fuel Element R & D Program,set in 1987,aims to develop the manufacturetechnology of HTR fuel element and to produce the fuel element for the first core of our 10MW experimental reactor.Now the work on laboratory scale is phased out.In this paper,the fuel element manufacture technology is described and the test results are given.
基金Supported by Natural Science Foundation of China(Nos.10772049 and 11072062)Research and Development Program of China(863 Program, No.2009AA04Z408)+1 种基金Natural Science Foundation of Shanghai(No.06ZR14009)Pujiang Scholar Program and the Wangdao Scholar Program(No.08076) of Fudan University
文摘A new method for three-dimensional simulation of the interaction between the gas and the solid around is developed.The effects of the gas on the thermal-mechanical behaviors within the surrounded solid are performed by replacing the internal gas with an equivalent solid in the modeling,which can make it convenient to simulate the thermal-mechanical coupling effects in the solid research objects with gases in them.The applied thermal expansion coefficient,Young's modulus and Poisson's ratio of the equivalent solid material are derived.A series of tests have been conducted;and the proposed equivalent solid method to simulate the gas effects is validated.
文摘Pebble bed reactors use cycling scheme of spherical fuel elements relying on fuel elements cycling system (FECS). The structure and control logic of FECS are very complex. Each control link has strict requirements on time and sequence. This increases the difficulties of description and analysis. In this paper, timed places control Petri nets (TPCPN) is applied for the modeling of FECS. On this basis the simulation of two important processes, namely uploading fuel elements into the core for the first time and emptying the core is finished by simulation software Arena. The results show that as TPCPN is able to describe different kinds of logic relationship and has time properties and control properties, it’s very suitable for the modeling and analysis of FECS.
文摘The oxidation resistance of the matrix materials is vital to the normal operation of HTGR and is also an important parameter for evaluating the safety response under accidental air or water ingress conditions. The oxidation kinetics of the three matrix material components: natural graphite, artificial graphite and resin carbon. was studied in a flowing gas mixture of oxygen and nitrogen using an auto thermogravimetric system. The results indicate that the artificial graphite has the slowest oxidation rate followed by the natural graphite and then the resin carbon with the highest oxidation rate. Vacuum heat treatment of the natural graphite at 1950℃ decreases the impurities and increases the oxidation activation energy. Differences between the activation energy and the oxidation rate of the resin carbon heat treated at 1950℃ and 1600℃ resulted from changes in the micro-pore texture. and the reduction of impurities.