A microbial fuel cell(MFC)is a novel promising technology for simultaneous renewable electricity generation and wastewater treatment.Three non-comparable objectives,i.e.power density,attainable current density and was...A microbial fuel cell(MFC)is a novel promising technology for simultaneous renewable electricity generation and wastewater treatment.Three non-comparable objectives,i.e.power density,attainable current density and waste removal ratio,are often conflicting.A thorough understanding of the relationship among these three conflicting objectives can be greatly helpful to assist in optimal operation of MFC system.In this study,a multiobjective genetic algorithm is used to simultaneously maximizing power density,attainable current density and waste removal ratio based on a mathematical model for an acetate two-chamber MFC.Moreover,the level diagrams method is utilized to aid in graphical visualization of Pareto front and decision making.Three biobjective optimization problems and one three-objective optimization problem are thoroughly investigated.The obtained Pareto fronts illustrate the complex relationships among these three objectives,which is helpful for final decision support.Therefore,the integrated methodology of a multi-objective genetic algorithm and a graphical visualization technique provides a promising tool for the optimal operation of MFCs by simultaneously considering multiple conflicting objectives.展开更多
Efficient and secure refueling within the vehicle refueling systems exhibits a close correlation with the issues concerning fuel backflow and gasoline evaporation.This paper investigates the transient flow behavior in...Efficient and secure refueling within the vehicle refueling systems exhibits a close correlation with the issues concerning fuel backflow and gasoline evaporation.This paper investigates the transient flow behavior in fuel hose refilling and simplified tank fuel replenishment using the volume of fluid method.The numerical simulation is validated with the simplified hose refilling experiment and the evaporation simulation of Stefan tube.The effects of injection flow rate and injection directions have been discussed in the fuel hose refilling part.For both the experiment and simulation,the pressure at the end of the refueling pipe in the lower located nozzle case is 30%higher than that in the upper located nozzle case at a high flow rate,and the backflow phenomenon occurs at the lower filling mode.The fluid will directly flush into the first pipe elbow,changing the flow pattern from bubble flow to slug flow,which results in low-frequency and high-amplitude flowpressure fluctuations.Ahexane refueling system,consisting of a refueling pipe,fuel tank and a vapor return line,is analyzed,in which hexane evaporation is considered.At the early refueling period,a higher refueling rate will lead to more obvious splashing,which leads to a higher average mass of hexane vapor and pressure in the tank.Two optimized fuel tank designs are examined.The lower fuel tank filling port exhibits significantly lower vapor hexane in the fuel tank compared to the other design,resulting in a reduction of 200 Pa in the peak pressure in the tank,which contributes to a substantial reduction of gasoline loss during tank filling.展开更多
Low thrust propulsion and gravity assist (GA) are among the most promising techniques for deep space explorations.In this paper the two techniques are combined and treated comprehensively,both on modeling and numerica...Low thrust propulsion and gravity assist (GA) are among the most promising techniques for deep space explorations.In this paper the two techniques are combined and treated comprehensively,both on modeling and numerical techniques.Fuel optimal orbit rendezvous via multiple GA is first formulated as optimal guidance with multiple interior constraints and then the optimal necessary conditions,various transversality conditions and stationary conditions are derived by Pontryagin's Maximum Principle (PMP).Finally the initial orbit rendezvous problem is transformed into a multiple point boundary value problem (MPBVP).Homotopic technique combined with random searching globally and Particle Swarm Optimization (PSO),is adopted to handle the numerical difficulty in solving the above MPBVP by single shooting method.Two scenarios in the end show the merits of the present approach.展开更多
This paper investigates the problem of fuel-efficient and safe control of autonomous vehicle platoons. We present a two-part hierarchical control method that can guarantee platoon stability with minimal fuel consumpti...This paper investigates the problem of fuel-efficient and safe control of autonomous vehicle platoons. We present a two-part hierarchical control method that can guarantee platoon stability with minimal fuel consumption. The first part vehicle controller is derived in the context of receding horizon optimal control by constructing and solving an optimization problem of overall fuel consumption. The Second part platoon controller is a complementation of the first part, which is given on the basis of platoon stability analysis. The effectiveness of the presented platoon control method is demonstrated by both numerical simulations and experiments with laboratory-scale Arduino cars.展开更多
With the objective of reducing the flight cost and the amount of polluting emissions released in the atmosphere, a new optimization algorithm considering the climb, cruise and descent phases is presented for the refer...With the objective of reducing the flight cost and the amount of polluting emissions released in the atmosphere, a new optimization algorithm considering the climb, cruise and descent phases is presented for the reference vertical flight trajectory. The selection of the reference vertical navigation speeds and altitudes was solved as a discrete combinatory problem by means of a graphtree passing through nodes using the beam search optimization technique. To achieve a compromise between the execution time and the algorithm's ability to find the global optimal solution, a heuristic methodology introducing a parameter called ‘‘optimism coefficient was used in order to estimate the trajectory's flight cost at every node. The optimal trajectory cost obtained with the developed algorithm was compared with the cost of the optimal trajectory provided by a commercial flight management system(FMS). The global optimal solution was validated against an exhaustive search algorithm(ESA), other than the proposed algorithm. The developed algorithm takes into account weather effects, step climbs during cruise and air traffic management constraints such as constant altitude segments, constant cruise Mach, and a pre-defined reference lateral navigation route. The aircraft fuel burn was computed using a numerical performance model which was created and validated using flight test experimental data.展开更多
Rendezvous in circular or near circular orbits has been investigated in great detail, while rendezvous in arbitrary eccentricity elliptical orbits is not sufficiently explored. Among the various optimization methods p...Rendezvous in circular or near circular orbits has been investigated in great detail, while rendezvous in arbitrary eccentricity elliptical orbits is not sufficiently explored. Among the various optimization methods proposed for fuel optimal orbital rendezvous, Lawden's primer vector theory is favored by many researchers with its clear physical concept and simplicity in solu- tion. Prussing has applied the primer vector optimization theory to minimum-fuel, multiple-impulse, time-fixed orbital ren- dezvous in a near circular orbit and achieved great success. Extending Prussing's work, this paper will employ the primer vec- tor theory to study trajectory optimization problems of arbitrary eccentricity elliptical orbit rendezvous. Based on linearized equations of relative motion on elliptical reference orbit (referred to as T-H equations), the primer vector theory is used to deal with time-fixed multiple-impulse optimal rendezvous between two coplanar, coaxial elliptical orbits with arbitrary large ec- centricity. A parameter adjustment method is developed for the prime vector to satisfy the Lawden's necessary condition for the optimal solution. Finally, the optimal multiple-impulse rendezvous solution including the time, direction and magnitudes of the impulse is obtained by solving the two-point boundary value problem. The rendezvous error of the linearized equation is also analyzed. The simulation results confirmed the analyzed results that the rendezvous error is small for the small eccentric- ity case and is large for the higher eccentricity. For better rendezvous accuracy of high eccentricity orbits, a combined method of multiplier penalty function with the simplex search method is used for local optimization. The simplex search method is sensitive to the initial values of optimization variables, but the simulation results show that initial values with the primer vector theory, and the local optimization algorithm can improve the rendezvous accuracy effectively with fast convergence, because the optimal results obtained by the primer vector theory are already very close to the actual optimal solution.展开更多
A new set of relative orbit elements(ROEs)is used to derive a new elliptical formation flying model.In-plane and out-of-plane motions can be completely decoupled,which benefts elliptical formation design.The inverse...A new set of relative orbit elements(ROEs)is used to derive a new elliptical formation flying model.In-plane and out-of-plane motions can be completely decoupled,which benefts elliptical formation design.The inverse transformation of the state transition matrix is derived to study the relative orbit control strategy.Impulsive feedback control laws are developed for both in-plane and out-of-plane relative motions.Control of in-plane and out-of-plane relative motions can be completely decoupled using the ROE-based feedback control law.A tangential impulsive control method is proposed to study the relationship of fuel consumption and maneuvering positions.An optimal analytical along-track impulsive control strategy is then derived.Different typical orbit maneuvers,including formation establishment,reconfguration,long-distance maneuvers,and formation keeping,are taken as examples to demonstrate the performance of the proposed control laws.The effects of relative measurement errors are also considered to validate the high accuracy of the proposed control method.展开更多
A robust constant thrust rendezvous approach under thrust failure is proposed based on the relative motion dynamic model. Firstly, the design problem is cast into a convex optimization problem by introducing a Lyapuno...A robust constant thrust rendezvous approach under thrust failure is proposed based on the relative motion dynamic model. Firstly, the design problem is cast into a convex optimization problem by introducing a Lyapunov function subject to linear matrix inequalities. Secondly, the robust controllers satisfying the requirements can be designed by solving this optimization problem. Then, a new algorithm of constant thrust fitting is proposed through the impulse compensation and the fuel consumption under the theoretical continuous thrust and the actual constant thrust is cal- culated and compared by using the method proposed in this paper. Finally, the proposed method having the advantage of saving fuel is proved and the actual constant thrust switch control laws are obtained through the isochronous interpolation method, meanwhile, an illustrative example is pro- vided to show the effectiveness of the proposed control design method.展开更多
基金Supported by the National Natural Science Foundation of China(21576163)the Major State Basic Research Development Program of China(2014CB239703)+1 种基金the Science and Technology Commission of Shanghai Municipality(14DZ2250800)the Project-sponsored by SRF for ROCS,SEM
文摘A microbial fuel cell(MFC)is a novel promising technology for simultaneous renewable electricity generation and wastewater treatment.Three non-comparable objectives,i.e.power density,attainable current density and waste removal ratio,are often conflicting.A thorough understanding of the relationship among these three conflicting objectives can be greatly helpful to assist in optimal operation of MFC system.In this study,a multiobjective genetic algorithm is used to simultaneously maximizing power density,attainable current density and waste removal ratio based on a mathematical model for an acetate two-chamber MFC.Moreover,the level diagrams method is utilized to aid in graphical visualization of Pareto front and decision making.Three biobjective optimization problems and one three-objective optimization problem are thoroughly investigated.The obtained Pareto fronts illustrate the complex relationships among these three objectives,which is helpful for final decision support.Therefore,the integrated methodology of a multi-objective genetic algorithm and a graphical visualization technique provides a promising tool for the optimal operation of MFCs by simultaneously considering multiple conflicting objectives.
基金supported by the National Natural Science Foundation of China with Grant No.12002334 for C.Z.,Zhejiang Provincial Natural Science Foundation(Grant No.LQ21A020004 for C.Z.)the Excellent Youth Natural Science Foundation of Zhejiang Province,National Science Foundation of Anhui Province(2108085QE226)China(No.LR21E060001 for L.Q.and C.Z.).C.Z.acknowledges the China Scholarship Council(No.202108330166)for providing him with a visiting scholarship at NUS,Singapore.
文摘Efficient and secure refueling within the vehicle refueling systems exhibits a close correlation with the issues concerning fuel backflow and gasoline evaporation.This paper investigates the transient flow behavior in fuel hose refilling and simplified tank fuel replenishment using the volume of fluid method.The numerical simulation is validated with the simplified hose refilling experiment and the evaporation simulation of Stefan tube.The effects of injection flow rate and injection directions have been discussed in the fuel hose refilling part.For both the experiment and simulation,the pressure at the end of the refueling pipe in the lower located nozzle case is 30%higher than that in the upper located nozzle case at a high flow rate,and the backflow phenomenon occurs at the lower filling mode.The fluid will directly flush into the first pipe elbow,changing the flow pattern from bubble flow to slug flow,which results in low-frequency and high-amplitude flowpressure fluctuations.Ahexane refueling system,consisting of a refueling pipe,fuel tank and a vapor return line,is analyzed,in which hexane evaporation is considered.At the early refueling period,a higher refueling rate will lead to more obvious splashing,which leads to a higher average mass of hexane vapor and pressure in the tank.Two optimized fuel tank designs are examined.The lower fuel tank filling port exhibits significantly lower vapor hexane in the fuel tank compared to the other design,resulting in a reduction of 200 Pa in the peak pressure in the tank,which contributes to a substantial reduction of gasoline loss during tank filling.
基金supported by the National Natural Science Foundation of China(Grant Nos. 10832004 and 11072122)
文摘Low thrust propulsion and gravity assist (GA) are among the most promising techniques for deep space explorations.In this paper the two techniques are combined and treated comprehensively,both on modeling and numerical techniques.Fuel optimal orbit rendezvous via multiple GA is first formulated as optimal guidance with multiple interior constraints and then the optimal necessary conditions,various transversality conditions and stationary conditions are derived by Pontryagin's Maximum Principle (PMP).Finally the initial orbit rendezvous problem is transformed into a multiple point boundary value problem (MPBVP).Homotopic technique combined with random searching globally and Particle Swarm Optimization (PSO),is adopted to handle the numerical difficulty in solving the above MPBVP by single shooting method.Two scenarios in the end show the merits of the present approach.
基金supported by the National Natural Science Foundation of China(Grant Nos.61273107 and 61573077)Dalian Leading Talent(Grant No.841252)
文摘This paper investigates the problem of fuel-efficient and safe control of autonomous vehicle platoons. We present a two-part hierarchical control method that can guarantee platoon stability with minimal fuel consumption. The first part vehicle controller is derived in the context of receding horizon optimal control by constructing and solving an optimization problem of overall fuel consumption. The Second part platoon controller is a complementation of the first part, which is given on the basis of platoon stability analysis. The effectiveness of the presented platoon control method is demonstrated by both numerical simulations and experiments with laboratory-scale Arduino cars.
基金the team of the Business-led Network of Centers of Excellence Green Aviation Research & Development Network (GARDN)in particular Mr. Sylvan Cofsky, for the funds received for this project (GARDNⅡ–Project: CMC-21)conducted at The Research Laboratory in Active Controls, Avionics and Aeroservoelasticity (LARCASE) in the framework of the global project ‘‘Optimized Descent and Cruise”
文摘With the objective of reducing the flight cost and the amount of polluting emissions released in the atmosphere, a new optimization algorithm considering the climb, cruise and descent phases is presented for the reference vertical flight trajectory. The selection of the reference vertical navigation speeds and altitudes was solved as a discrete combinatory problem by means of a graphtree passing through nodes using the beam search optimization technique. To achieve a compromise between the execution time and the algorithm's ability to find the global optimal solution, a heuristic methodology introducing a parameter called ‘‘optimism coefficient was used in order to estimate the trajectory's flight cost at every node. The optimal trajectory cost obtained with the developed algorithm was compared with the cost of the optimal trajectory provided by a commercial flight management system(FMS). The global optimal solution was validated against an exhaustive search algorithm(ESA), other than the proposed algorithm. The developed algorithm takes into account weather effects, step climbs during cruise and air traffic management constraints such as constant altitude segments, constant cruise Mach, and a pre-defined reference lateral navigation route. The aircraft fuel burn was computed using a numerical performance model which was created and validated using flight test experimental data.
基金supported by the National Natural Science Foundation of China(Grant Nos. 10832004 and 11072122)
文摘Rendezvous in circular or near circular orbits has been investigated in great detail, while rendezvous in arbitrary eccentricity elliptical orbits is not sufficiently explored. Among the various optimization methods proposed for fuel optimal orbital rendezvous, Lawden's primer vector theory is favored by many researchers with its clear physical concept and simplicity in solu- tion. Prussing has applied the primer vector optimization theory to minimum-fuel, multiple-impulse, time-fixed orbital ren- dezvous in a near circular orbit and achieved great success. Extending Prussing's work, this paper will employ the primer vec- tor theory to study trajectory optimization problems of arbitrary eccentricity elliptical orbit rendezvous. Based on linearized equations of relative motion on elliptical reference orbit (referred to as T-H equations), the primer vector theory is used to deal with time-fixed multiple-impulse optimal rendezvous between two coplanar, coaxial elliptical orbits with arbitrary large ec- centricity. A parameter adjustment method is developed for the prime vector to satisfy the Lawden's necessary condition for the optimal solution. Finally, the optimal multiple-impulse rendezvous solution including the time, direction and magnitudes of the impulse is obtained by solving the two-point boundary value problem. The rendezvous error of the linearized equation is also analyzed. The simulation results confirmed the analyzed results that the rendezvous error is small for the small eccentric- ity case and is large for the higher eccentricity. For better rendezvous accuracy of high eccentricity orbits, a combined method of multiplier penalty function with the simplex search method is used for local optimization. The simplex search method is sensitive to the initial values of optimization variables, but the simulation results show that initial values with the primer vector theory, and the local optimization algorithm can improve the rendezvous accuracy effectively with fast convergence, because the optimal results obtained by the primer vector theory are already very close to the actual optimal solution.
基金supported by the Innovation Foundation of BUAA for PhD Graduates (No.YWF-12-RBYJ-024)the National Natural Science Foundation of China (No.11002008)National Basic Research Program of China (No.2009CB723906)
文摘A new set of relative orbit elements(ROEs)is used to derive a new elliptical formation flying model.In-plane and out-of-plane motions can be completely decoupled,which benefts elliptical formation design.The inverse transformation of the state transition matrix is derived to study the relative orbit control strategy.Impulsive feedback control laws are developed for both in-plane and out-of-plane relative motions.Control of in-plane and out-of-plane relative motions can be completely decoupled using the ROE-based feedback control law.A tangential impulsive control method is proposed to study the relationship of fuel consumption and maneuvering positions.An optimal analytical along-track impulsive control strategy is then derived.Different typical orbit maneuvers,including formation establishment,reconfguration,long-distance maneuvers,and formation keeping,are taken as examples to demonstrate the performance of the proposed control laws.The effects of relative measurement errors are also considered to validate the high accuracy of the proposed control method.
基金supported by the National Natural Science Foundation of China (No. 61304088)the Fundamental Research Funds for the Central Universities of China (No. 2013QNA37)
文摘A robust constant thrust rendezvous approach under thrust failure is proposed based on the relative motion dynamic model. Firstly, the design problem is cast into a convex optimization problem by introducing a Lyapunov function subject to linear matrix inequalities. Secondly, the robust controllers satisfying the requirements can be designed by solving this optimization problem. Then, a new algorithm of constant thrust fitting is proposed through the impulse compensation and the fuel consumption under the theoretical continuous thrust and the actual constant thrust is cal- culated and compared by using the method proposed in this paper. Finally, the proposed method having the advantage of saving fuel is proved and the actual constant thrust switch control laws are obtained through the isochronous interpolation method, meanwhile, an illustrative example is pro- vided to show the effectiveness of the proposed control design method.