期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Multiphysics simulation of VVER-1200 fuel performance during normal operating conditions 被引量:2
1
作者 Khaled M.Yassin Mohamed H.Hassan +3 位作者 Mohammad M.Ghoneim Mostafa S.Elkolil Adel Alyan Said A.Agamy 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第2期139-152,共14页
Nuclear fuel performance modeling and simulation are critical tasks for nuclear fuel design optimization and safety analysis under normal and transient conditions.Fuel performance is a complicated phenomenon that invo... Nuclear fuel performance modeling and simulation are critical tasks for nuclear fuel design optimization and safety analysis under normal and transient conditions.Fuel performance is a complicated phenomenon that involves thermal,mechanical,and irradiation mechanisms and requires special multiphysics modules.In this study,a fuel performance model was developed using the COMSOL Multiphysics platform.The modeling was performed for a 2D axis-symmetric geometry of a UO2fuel pellet in the E110 clad for VVER-1200 fuel.The modeling considers all relevant phenomena,including heat generation and conduction,gap heat transfer,elastic strain,mechanical contact,thermal expansion,grain growth,densification,fission gas generation and release,fission product swelling,gap/plenum pressure,and cladding thermal and irradiation creep.The model was validated using a code-to-code evaluation of the fuel pellet centerline and surface temperatures in the case of constant power,in addition to validation of fission gas release(FGR)predictions.This prediction proved that the model could perform according to previously published VVER nuclear fuel performance parameters.A sensitivity study was also conducted to assess the effects of uncertainty on some of the model parameters.The model was then used to predict the VVER-1200 fuel performance parameters as a function of burnup,including the temperature profiles,gap width,fission gas release,and plenum pressure.A compilation of related material and thermomechanical models was conducted and included in the modeling to allow the user to investigate different material/performance models.Although the model was developed for normal operating conditions,it can be modified to include off-normal operating conditions. 展开更多
关键词 VVER-1200 fuel performance COMSOL code Zr-1%Nb cladding UO2 fuel rod
下载PDF
Transient fuel performance analysis of UO_(2)–BeO fuel with composite SiC coated with Cr cladding based on multiphysics method 被引量:1
2
作者 Chun‑Yu Yin Shi‑Xin Gao +3 位作者 Sheng‑Yu Liu Rong Liu Guang‑Hui Su Li‑Bo Qian 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第12期93-108,共16页
The transient multiphysics models were updated in CAMPUS to evaluate the accident-tolerant fuel performance under accident conditions.CAMPUS is a fuel performance code developed based on COMSOL.The simulated results o... The transient multiphysics models were updated in CAMPUS to evaluate the accident-tolerant fuel performance under accident conditions.CAMPUS is a fuel performance code developed based on COMSOL.The simulated results of the UO_(2)–Zircaloy fuel performance under accident conditions were compared with those of the FRAPTRAN code and the experimental data to verify the correctness of the updated CAMPUS.Subsequently,multiphysics models of the UO_(2)–BeO fuel and composite SiC coated with Cr(SiC_(f)/SiC-Cr)cladding were implemented in CAMPUS.Finally,the fuel performance of the three types of fuel cladding systems under Loss of Coolant Accident(LOCA)and Reactivity Insertion Accident(RIA)conditions was evaluated and compared,including the temperature distribution,stress distribution,pressure evolution,and cladding failure time.The results showed that the fuel temperature of the UO_(2) fuel under accident conditions without pre-irradiation was lower after being combined with SiC_(f)/SiC-Cr cladding.Moreover,the centerline and outer surface temperatures of the UO_(2)–BeO fuel combined with SiC_(f)/SiC-Cr cladding reduced further under accident conditions.The cladding temperature increased after the combination with the SiC_(f)/SiC-Cr cladding under accident conditions with pre-irradiation.In addition,the use of SiC_(f)/SiC-Cr cladding significantly reduced the cladding hoop strain and plenum pressure. 展开更多
关键词 Accident condition fuel performance UO2–BeO fuel SiCf/SiC-Cr cladding
下载PDF
Al^(3+) doped CeO_(2) for proton conducting fuel cells
3
作者 Sarfraz Shahzad Rasool +6 位作者 Muhammad Khalid MAKYousaf Shah Bin Zhu Jung-Sik Kim Muhammad Imran Asghar Nabeela Akbar Wenjing Dong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2253-2262,共10页
Developing high ionic conducting electrolytes is crucial for applying proton-conducting fuel cell(PCFCs)practically.The cur-rent study investigates the effect of alumina on the structural,morphological,electrical,and ... Developing high ionic conducting electrolytes is crucial for applying proton-conducting fuel cell(PCFCs)practically.The cur-rent study investigates the effect of alumina on the structural,morphological,electrical,and electrochemical properties of CeO_(2).Lattice oxygen vacancies are induced in CeO_(2) by a general doping concept that enables fast ionic conduction at low-temperature ranges(300-500℃)for PCFCs.Rietveld refinement of the X-ray diffraction(XRD)patterns established the pure cubic fluorite structure of Al-doped CeO_(2)(ADC)samples and confirmed Al ions’fruitful integration in the CeO_(2) lattice.The electronic structure of the alumina-doped ceria of the materials(10ADC,20ADC,and 30ADC)has been investigated.As a result,it was found that the best composition of 30ADC-based electrolytes induced maximum lattice oxygen vacancies.The corresponding PCFC exhibited a maximum power output of 923 mW/cm^(2)at 500℃.Moreover,the investigation proves the proton-conducting ability of alumina-doped ceria-based fuel cells by using an oxide ion-blocking layer. 展开更多
关键词 proton ceramic fuel cells oxygen vacancies higher fuel cell performance DOPING fast ions transportation
下载PDF
Probing the Efficiency of PPMG-Based Composite Electrolytes for Applications of Proton Exchange Membrane Fuel Cell
4
作者 Shakeel Ahmed Faizah Altaf +6 位作者 Safyan Akram Khan Sumaira Manzoor Aziz Ahmad Muhammad Mansha Shahid Ali Ata-ur-Rehman Karl Jacob 《Transactions of Tianjin University》 EI CAS 2024年第3期262-283,共22页
PPMG-based composite electrolytes were fabricated via the solution method using the polyvinyl alcohol and polyvinylpyrrolidone blend reinforced with various contents of sulfonated inorganic filler.Sulfuric acid was em... PPMG-based composite electrolytes were fabricated via the solution method using the polyvinyl alcohol and polyvinylpyrrolidone blend reinforced with various contents of sulfonated inorganic filler.Sulfuric acid was employed as the sulfonating agent to functionalize the external surface of the inorganic filler,i.e.,graphene oxide.The proton conductivities of the newly prepared proton exchange membranes(PEMs)were increased by increasing the temperature and content of sulfonated graphene oxide(SGO),i.e.,ranging from 0.025 S/cm to 0.060 S/cm.The induction of the optimum level of SGO is determined to be an excellent route to enhance ionic conductivity.The single-cell performance test was conducted by sandwiching the newly prepared PEMs between an anode(0.2 mg/cm^(2) Pt/Ru)and a cathode(0.2 mg/cm^(2) Pt)to prepare membrane electrode assemblies,followed by hot pressing under a pressure of approximately 100 kg/cm^(2) at 60℃for 5–10 min.The highest power densities achieved with PPMG PEMs were 14.9 and 35.60 mW/cm^(2) at 25℃and 70℃,respectively,at ambient pressure with 100%relative humidity.Results showed that the newly prepared PEMs exhibit good electrochemical performance.The results indicated that the prepared composite membrane with 6 wt%filler can be used as an alternative membrane for applications of high-performance proton exchange membrane fuel cell. 展开更多
关键词 Proton exchange membrane fuel cell Sulfonated graphene oxide POLYVINYLPYRROLIDONE Solution casting Membrane electrode assembly fuel cell performance
下载PDF
Effect of H_2S Flow Rate and Concentration on Performance of H_2S/Air Solid Oxide Fuel Cell 被引量:4
5
作者 钟理 张腾云 +3 位作者 陈建军 WEI Guolin LUO Jingli K.Chung 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第2期306-309,共4页
A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performa... A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performance of the fuel cell was dependent on anode compartment H2S flow rate and concentration. The cell open-circuit voltage increased with increasing H2S flow rate. It was found that increasing both H2S flow rate and H2S concentration improved current-voltage and power density performance. This is resulted from improved gas diffusion in anode and increased concentration of anodic electroactive species. Operation at elevated H2S concentration improved the cell performance at a given gas flow rate. However, as low as 5% H2S in gas mixture can also be utilized as fuel feed to cells. Highest current and power densities, 17500mA·cm-2 and 200mW·cm-2, are obtained with pure H2S flow rate of 50ml·min-1 and air flow rate of 100ml·min-1 at 850℃. 展开更多
关键词 fuel cell performance H2S/air fuel cell solid oxide fuel cell (SOFC)
下载PDF
Performance evaluation of the incorporation of different wire meshes in between perforated current collectors and membrane electrode assembly on the Passive Direct methanol fuel cell
6
作者 Muralikrishna Boni S.Srinivasa Rao G.Naga Srinivasulu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第4期360-367,共8页
Passive Direct methanol fuel cells(DMFC)are more suitable for charging small capacity electronic devices.In passive DMFC,the fuel and oxidant are supplied by diffusion and natural convection process on the anode and c... Passive Direct methanol fuel cells(DMFC)are more suitable for charging small capacity electronic devices.In passive DMFC,the fuel and oxidant are supplied by diffusion and natural convection process on the anode and cathode sides respectively.Current collectors(CC)play a vital importance in fuel cell performance.This paper presents the combined impact of perforated and wire mesh current collectors(WMCC)on passive DMFC performance.Three types of open ratios of perforated current collectors(PCC),such as 45.40%,55.40%and 63.40%and two types of wire mesh current collectors with open ratios of 38.70%and 45.40%were chosen for the experimental work.A combination of TaguchiL9 rule is considered.A combination of three PCC and two WMCC on both anode and cathode was used.Methanol concentration was varied from 1 mol·L^(-1)-5 mol·L^(-1)for nine combinations of PCC and WMCC.From the experimental results,it is noticed that the combination of PCC and WMCC with an open ratio of 55.40%and 38.70%incorporated passive DMFC produced peak power density at 5 mol·L^(-1)of methanol concentration.The passive DMFC performance was evaluated in terms of maximum power density and maximum current density.The combined current collectors of PCC and WMCC open ratios of 55.40%+38.70%have more stable voltage than single PCC of open ratio 63.40%at 4 mol·L^(-1)of methanol concentration. 展开更多
关键词 Passive DMFC Perforated current collector Wire mesh current collector Methanol concentration fuel cell performance
下载PDF
Evaluation of Nonlinear Finite Element Module for the Simulation of Fuel Behavior
7
作者 Hyo Chan Kim Yong Sik Yang +1 位作者 Yang Hyun Koo Young Doo Kwon 《Journal of Energy and Power Engineering》 2013年第4期689-694,共6页
Because zirconium alloy cladding is the first containment barrier for fission products, its mechanical integrity is the most important concern. In view of the mechanical integrity, stress and strain are the main facto... Because zirconium alloy cladding is the first containment barrier for fission products, its mechanical integrity is the most important concern. In view of the mechanical integrity, stress and strain are the main factors that affect the cladding performance during normal or off-normal operation, which induces force interaction between the pellet and cladding. In the case of a normal operation period, to estimate the cladding stress and strain, various models and codes have been developed using a simplified 1D (one-dimensional) assumption. However, in the case of a slow ramp during start-up and shut-down and a fast transient such as an AOO (anticipated operational occurrence), it is difficult for a 1D model to simulate the cladding stress and strain accurately due to its modeling limitation. To model a large deformation along the radial and axial directions such as a "'ballooning" phenomenon, FE (finite element) modeling, which can simulate a higher degree of freedom, is an indispensable requirement. In this work, an axisymmetric two-dimensional FE module, which will be integrated into the transient fuel performance code, has been developed. To solve the mechanical equilibrium of the pellet-cladding system, taking into account the geometrical and material non-linearities, the FE module employs an ESF (effective-stress-function) algorithm. Verifications of the FE module for the cases of thermal and elastic analyes were performed using the results of ANSYS 13.0. 展开更多
关键词 Pressurized water reactor fuel performance code finite element method thermo-mechanical analysis.
下载PDF
Revisiting Stainless Steel as PWR Fuel Rod Cladding after Fukushima Daiichi Accident
8
作者 Alfredo Abe Claudia Giovedi +1 位作者 Daniel de Souza Gomes Antonio Teixeira e Silva 《Journal of Energy and Power Engineering》 2014年第6期973-980,共8页
In the past, stainless steel was utilized as cladding in many PWRs (pressurized water reactors), and its performance under irradiation was excellent. However, stainless steel was replaced by zirconium-based alloy as... In the past, stainless steel was utilized as cladding in many PWRs (pressurized water reactors), and its performance under irradiation was excellent. However, stainless steel was replaced by zirconium-based alloy as cladding material mainly due to its lower neutron absorption cross section. Now, stainless steel cladding appears as a possible solution for safety problems related to hydrogen production and explosion as occurred in Fukushima Daiichi accident. The aim of this paper is to discuss the steady-state irradiation performance using stainless steel as cladding. The results show that stainless steel rods display higher fuel temperatures and wider pellet-cladding gaps than Zircaloy rods and no gap closure. The thermal performance of the two rods is very similar and the neutron absorption penalty due to stainless steel use could be compensating by combining small increase in U-235 enrichment and pitch size changes. 展开更多
关键词 Austenitic stainless steel cladding Zircaloy cladding PWR fuel rod steady-state fuel performance codes.
下载PDF
Jet CAT P80 Thermal Analyses and Performance Assessment Using Different Fuels Types 被引量:1
9
作者 Grigore CICAN Adina TOMA +1 位作者 Cristian PUSCASU Razvan CATANA 《Journal of Thermal Science》 SCIE EI CAS CSCD 2018年第4期389-393,共5页
The micro gas turbine propulsion systems represent a good choice for the unmanned aerial vehicles(UAVs). The present work monitors the engine parameters, correlating them with other important engine instrumentation da... The micro gas turbine propulsion systems represent a good choice for the unmanned aerial vehicles(UAVs). The present work monitors the engine parameters, correlating them with other important engine instrumentation data. The aim of this research was to study the operation of the Jet CAT using various types of fuels under various operating conditions: normal acceleration and sudden acceleration. The measured parameters were monitored under different conditions:(A) Engine operation at two different ambient temperatures – outdoor at 0oC and inside at 19oC; and(B) Using 4 fuel types: kerosene, diesel fuel, kerosene with 5% gasoline and kerosene with 10% gasoline. The relevance of this work is given by the fact that a detailed analysis is performed for the idle regime. The paper will present the detailed test plan used and the most relevant charts with the obtained results for: start time, force, temperature before turbine, fuel flow, depending on micro turbo engine speed. 展开更多
关键词 Jet CAT P80 fuel performance testing thermal analysis
原文传递
An introduction on the demonstration performance of fuel cell buses (FCB) in Beijing
10
作者 WANG Ju,TANG Miao 《中国汽车(英文版)》 2007年第9期9-10,共2页
Since the 1990’s, hydrogen has found broad use in the traffic segment. Compared with conventional ones, hydrogen fuelled vehicles, a new generation of clean vehicles, produce no pollutants, with higher energy efficie... Since the 1990’s, hydrogen has found broad use in the traffic segment. Compared with conventional ones, hydrogen fuelled vehicles, a new generation of clean vehicles, produce no pollutants, with higher energy efficiency. In today’s world where the pollution is tougher, the "Zero Pollution" fuel cell buses display 展开更多
关键词 bus cell An introduction on the demonstration performance of fuel cell buses in Beijing MPV FCB
原文传递
Effect of dilution holes on the performance of a triple swirler combustor 被引量:16
11
作者 Ding Guoyu He Xiaomin +3 位作者 Zhao Ziqiang An Bokun Song Yaoyu Zhu Yixiao 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第6期1421-1429,共9页
A triple swirler combustor is considered to be a promising solution for future high temperature rise combustors. The present paper aims to study dilution holes including primary dilution holes and secondary dilution h... A triple swirler combustor is considered to be a promising solution for future high temperature rise combustors. The present paper aims to study dilution holes including primary dilution holes and secondary dilution holes on the performance of a triple swirler combustor. Experimental investigations are conducted at different inlet airflow velocities(40–70 m/s) and combustor overall fuel–air ratio with fixed inlet airflow temperature(473 K) and atmospheric pressure. The experimental results show that the ignition is very difficult with specific performance of high ignition fuel–air ratio when the primary dilution holes are located 0.6H(where H is the liner dome height)downstream the dome, while the other four cases have almost the same ignition performance. The position of primary dilution holes has an effect on lean blowout stability and has a large influence on combustion efficiency. The combustion efficiency is the highest when the primary dilution holes are placed 0.9H downstream the dome among the five different locations.For the secondary dilution holes, the pattern factor of Design A is better than that of Design B. 展开更多
关键词 Combustor performance fuel–air ratio Primary dilution holes Secondary dilution holes Triple swirler combustor
原文传递
Application potential of high performance steels for weight reduction and efficiency increase in commercial vehicles 被引量:2
12
作者 Jian Bian Hardy Mohrbacher +3 位作者 Jian-Su Zhang Yun-Tang Zhao Hong-Zhou Lu Han Dong 《Advances in Manufacturing》 SCIE CAS CSCD 2015年第1期27-36,共10页
The fast-growing economy and the gradually established highway system have boosted the road trans- portation for both passenger and cargo over the last decade in China. From 2000 to 2010 Chinese GDP increased by aroun... The fast-growing economy and the gradually established highway system have boosted the road trans- portation for both passenger and cargo over the last decade in China. From 2000 to 2010 Chinese GDP increased by around 10.15% annually and the sales of medium and heavy trucks by around 18.87% (sales increased from 0.2 million in 2000 to 1.3 million in 2010) according to the National Bureau of Statistics of People's Republic of China. Today commercial vehicles consume almost the same amount of fuel as pas- senger cars in China although the number of commercial vehicles is only about one fourth of passenger cars. It is estimated that around 50% of imported fuel to China each year will be consumed by vehicle transportation. This si- tuation will worsen fuel shortage problems in the long run and at the same time it is partially responsible for the ever- worsening air pollution in China. Due to the widespread overloading in China, lightweight development in commer- cial vehicles has fallen far behind that of passenger cars with the consequences that Chinese commercial vehicles consume in average about 20% more fuel, especially the heavy trucks, compared to European models. Under these circumstances it is essential to reduce the vehicle fuel consumption and in- crease the transport efficiency. The key solution thereby is to implement lightweight design in commercial vehicles as it has been successfully practiced over the last decade in the passenger cars. This paper summarizes highlights given in presentations during the "International seminar on the ap- plication of high strength steels in light weight commercial vehicles" with the focus on the development and application of Nb alloyed high performance steels made for lightweight commercial vehicles. 展开更多
关键词 Commercial vehicle .fuel consumptionLight weighting . High performance steel. Nb-basedmetallurgy
原文传递
Highly active iridium catalyst for hydrogen production from formic acid 被引量:2
13
作者 Ying Du Yang-Bin Shen +3 位作者 Yu-Lu Zhan Fan-Di Ning Liu-Ming Yan Xiao-Chun Zhou 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第8期1746-1750,共5页
Formic acid(FA) dehydrogenation has attracted a lot of attentions since it is a convenient method for H_2 production. In this work, we designed a self-supporting fuel cell system, in which H_2 from FA is supplied in... Formic acid(FA) dehydrogenation has attracted a lot of attentions since it is a convenient method for H_2 production. In this work, we designed a self-supporting fuel cell system, in which H_2 from FA is supplied into the fuel cell, and the exhaust heat from the fuel cell supported the FA dehydrogenation. In order to realize the system, we synthesized a highly active and selective homogeneous catalyst Ir Cp*Cl_2 bpym for FA dehydrogenation. The turnover frequency(TOF) of the catalyst for FA dehydrogenation is as high as7150 h^(-1)at 50°C, and is up to 144,000 h^(-1)at 90°C. The catalyst also shows excellent catalytic stability for FA dehydrogenation after several cycles of test. The conversion ratio of FA can achieve 93.2%, and no carbon monoxide is detected in the evolved gas. Therefore, the evolved gas could be applied in the proton exchange membrane fuel cell(PEMFC) directly. This is a potential technology for hydrogen storage and generation. The power density of the PEMFC driven by the evolved gas could approximate to that using pure hydrogen. 展开更多
关键词 Formic acid Hydrogen generation Homogeneous catalyst Catalytic performance Proton exchange membrane fuel cell
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部