In order to obtain a deeper understanding of the behavior of the structure under high wind load,this paper conducted an experimental study on a full-scale L-shaped single story light frame wood house under the uniform...In order to obtain a deeper understanding of the behavior of the structure under high wind load,this paper conducted an experimental study on a full-scale L-shaped single story light frame wood house under the uniform lateral load simulated using a gasbag.The investigation involved the performance of light frame wood structure after it experienced the repeated cyclic lateral wind load as well as the performance of the structure under the ultimate lateral load.Then,the study verified that light frame wood structure can resist repeated cyclic wind loads without observable degradation in stiffness during the anticipated serve life,and recommended shear wall percent drift restriction for lateral wind load design of wood structure in serviceability limit states is 1/400 drift,and in ultimate limit states is 1/80 drift.The conclusions of this paper can be benefit for the engineering practice of the light frame wood structures in high wind load regions.展开更多
In order to clear constructional design of corner joint, it is necessary to further investi-gate mechanical property of corner joint in gabled frames. Through static test and finite element software analysis of compar...In order to clear constructional design of corner joint, it is necessary to further investi-gate mechanical property of corner joint in gabled frames. Through static test and finite element software analysis of comparing the panel zone with and without inclined stiffener. Some conclusions are given in the article. The load displacement curves show that the capacity of oblique nodes installed within stiffening rib components is enhanced i.e. 40% more than those without stiffening rib nodes. The results reveal that in the gabled frames, the corner node with the inclined stiffening rib can improve the bearing capacity of the specimens. When the extraterritorial flange is tension, the erection of the inclined stiffening rib can prevent structural failure and improve effectually the ductility of the structure.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No. 50508012)
文摘In order to obtain a deeper understanding of the behavior of the structure under high wind load,this paper conducted an experimental study on a full-scale L-shaped single story light frame wood house under the uniform lateral load simulated using a gasbag.The investigation involved the performance of light frame wood structure after it experienced the repeated cyclic lateral wind load as well as the performance of the structure under the ultimate lateral load.Then,the study verified that light frame wood structure can resist repeated cyclic wind loads without observable degradation in stiffness during the anticipated serve life,and recommended shear wall percent drift restriction for lateral wind load design of wood structure in serviceability limit states is 1/400 drift,and in ultimate limit states is 1/80 drift.The conclusions of this paper can be benefit for the engineering practice of the light frame wood structures in high wind load regions.
文摘In order to clear constructional design of corner joint, it is necessary to further investi-gate mechanical property of corner joint in gabled frames. Through static test and finite element software analysis of comparing the panel zone with and without inclined stiffener. Some conclusions are given in the article. The load displacement curves show that the capacity of oblique nodes installed within stiffening rib components is enhanced i.e. 40% more than those without stiffening rib nodes. The results reveal that in the gabled frames, the corner node with the inclined stiffening rib can improve the bearing capacity of the specimens. When the extraterritorial flange is tension, the erection of the inclined stiffening rib can prevent structural failure and improve effectually the ductility of the structure.