期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A fast and automatic full-potential finite volume solver on Cartesian grids for unconventional configurations 被引量:4
1
作者 Fanxi LYU Tianhang XIAO Xiongqing YU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第3期951-963,共13页
To meet the requirements of fast and automatic computation of subsonic and transonic aerodynamics in aircraft conceptual design,a novel finite volume solver for full potential flows on adaptive Cartesian grids is deve... To meet the requirements of fast and automatic computation of subsonic and transonic aerodynamics in aircraft conceptual design,a novel finite volume solver for full potential flows on adaptive Cartesian grids is developed in this paper.Cartesian grids with geometric adaptation are firstly generated automatically with boundary cells processed by cell-cutting and cell-merging algorithms.The nonlinear full potential equation is discretized by a finite volume scheme on these Cartesian grids and iteratively solved in an implicit fashion with a generalized minimum residual(GMRES) algorithm.During computation,solution-based mesh adaptation is also applied so as to capture flow features more accurately.An improved ghost-cell method is proposed to implement the non-penetration wall boundary condition where the velocity-potential of a ghost cell is modified by an analytic method instead.According to the characteristics of the Cartesian grids,the Kutta condition is applied by specially computing the gradients on Kutta-faces without directly assigning the potential jump to cells adjacent wake faces,which can significantly improve the solution converging speed.The feasibility and accuracy of the proposed method are validated by several typical cases of sub/transonic flows around an ONERA M6 wing,a DLR-F4 wing-body,and an unconventional figuration of a blended wing body(BWB).The validation cases demonstrate a fast convergence with fully automatic grid treatment and computation,and the results suggest its capacity in application for aircraft conceptual design. 展开更多
关键词 Cartesian grids CUT-cell Finite volume method full potential equation Grid adaptation Kutta condition Non-penetration condition
原文传递
A New Single-blade Based Hybrid CFD Method for Hovering and Forward-flight Rotor Computation 被引量:9
2
作者 SHI Yongjie ZHAO Qijun FAN Feng XU Guohua 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2011年第2期127-135,共9页
A hybrid Euler/full potential/Lagrangian wake method,based on single-blade simulation,for predicting unsteady aerodynamic flow around helicopter rotors in hover and forward flight has been developed.In this method,an ... A hybrid Euler/full potential/Lagrangian wake method,based on single-blade simulation,for predicting unsteady aerodynamic flow around helicopter rotors in hover and forward flight has been developed.In this method,an Euler solver is used to model the near wake evolution and transonic flow phenomena in the vicinity of the blade,and a full potential equation(FPE) is used to model the isentropic potential flow region far away from the rotor,while the wake effects of other blades and the far wake are incorporated into the flow solution as an induced inflow distribution using a Lagrangian based wake analysis.To further reduce the execution time,the computational fluid dynamics(CFD) solution and rotor wake analysis(including induced velocity up-date) are conducted parallelly,and a load balancing strategy is employed to account for the information exchange between two solvers.By the developed method,several hover and forward-flight cases on Caradonna-Tung and Helishape 7A rotors are per-formed.Good agreements of the loadings on blade surface with available measured data demonstrate the validation of the method.Also,the CPU time required for different computation runs is compared in the paper,and the results show that the pre-sent hybrid method is superior to conventional CFD method in time cost,and will be more efficient with the number of blades increasing. 展开更多
关键词 hybrid CFD method Euler equations full potential equations wake model ROTOR helicopters
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部