The characteristics of neutral chromium atoms in the standing wave field are discussed. Based on a semi-classical model, the motion equation of neutral atoms in the laser standing wave field is analyzed, and the traje...The characteristics of neutral chromium atoms in the standing wave field are discussed. Based on a semi-classical model, the motion equation of neutral atoms in the laser standing wave field is analyzed, and the trajectories of the atoms are obtained by simulations with the different divergence angles of the atomic beam. The simulation results show that the full width at half maximum (FWHM) of the stripe is 2.75 nm and the contrast is 38.5 : 1 when the divergence angle equals 0 mrad, the FWHM is 24.1 nm and the contrast is 6.8:1 when the divergence angle equals 0.2 mrad and the FWHMs are 58.6 and 137.8 nm, and the contrasts are 3.3 : 1 and 1.6 : i when the divergence angles equal 0.5 and 1.0 mrad, respectively.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11064002 and 11061011)
文摘The characteristics of neutral chromium atoms in the standing wave field are discussed. Based on a semi-classical model, the motion equation of neutral atoms in the laser standing wave field is analyzed, and the trajectories of the atoms are obtained by simulations with the different divergence angles of the atomic beam. The simulation results show that the full width at half maximum (FWHM) of the stripe is 2.75 nm and the contrast is 38.5 : 1 when the divergence angle equals 0 mrad, the FWHM is 24.1 nm and the contrast is 6.8:1 when the divergence angle equals 0.2 mrad and the FWHMs are 58.6 and 137.8 nm, and the contrasts are 3.3 : 1 and 1.6 : i when the divergence angles equal 0.5 and 1.0 mrad, respectively.