For the advantages of easy realization and rapidly intelligent response,the one-cycle control was applied in five-phase six-leg switching power amplifier for magnetic bearing.This paper improves the one-cycle control ...For the advantages of easy realization and rapidly intelligent response,the one-cycle control was applied in five-phase six-leg switching power amplifier for magnetic bearing.This paper improves the one-cycle control considering resistance voltage drop and derives its mathematical models.The improved algorithm is compared with the former one.The simulation and experimental results show that the improved algorithm can effectively reduce the output current ripple,achieve good tracking of the given current,improve the control accuracy,and verify the effectiveness and superiority of the method.展开更多
Quasi-PID control method that is able to effectively inhibit the inherent tracking error of PI control method is proposed on the basis of a rounded theoretical analysis of a model of switching power amplifiers (SPAs)....Quasi-PID control method that is able to effectively inhibit the inherent tracking error of PI control method is proposed on the basis of a rounded theoretical analysis of a model of switching power amplifiers (SPAs). To avoid the harmful impacts of the circuit parameter variations and the random disturbances on quasi-PID control method, a single neuron is introduced to endow it with self-adaptability. Quasi-PID control method and the single neuron combine with each other perfectly, and their formation is named as single-neuron adaptive quasi-PID control method. Simulation and experimental results show that single-neuron adaptive quasi-PID control method can accurately track both the predictable and the unpredictable waveforms. Quantitative analysis demonstrates that the accuracy of single-neuron adaptive quasi-PID control method is comparable to that of linear power amplifiers (LPAs) and so can fulfill the requirements of some high-accuracy applications, such as protective relay test. Such accuracy is very difficult to be achieved by many modern control methods for converter controls. Compared with other modern control methods, the programming realization of single-neuron adaptive quasi-PID control method is more suitable for real-time applications and realization on low-end microprocessors for its simple structure and lower computational complexity.展开更多
This paper proposes a novel implementation strategy for soft switching PFC whose circuit is simple and can achieve low voltage output directly. The main circuit adopts current mode full-bridge converter and all the po...This paper proposes a novel implementation strategy for soft switching PFC whose circuit is simple and can achieve low voltage output directly. The main circuit adopts current mode full-bridge converter and all the power switches can realize ZCS or ZVS in the way of phase-shlfted control, using the leakage inductance of the transformer, the junction capacitor of the switches and the stored energy of the output capacitor. The problems such as the function of phase-shlfted link in control circuit, the implementation conditions of soft switching and bias restrained are analyzed. The adoption of constant frequency PWM control makes the design of the input and output filter link and the high frequency transformer simple. The transformation ratio regulation so as to achieve low voltage output and electrical insulation can be realized by using high frequency transformer.展开更多
A laser-diode-pumped high-pulse-energy Nd:LiYF4 master oscillator power amplifier 1053 nm laser system is demonstrated. We design a home-made pump module to homogenize the pump intensity through the ray tracing metho...A laser-diode-pumped high-pulse-energy Nd:LiYF4 master oscillator power amplifier 1053 nm laser system is demonstrated. We design a home-made pump module to homogenize the pump intensity through the ray tracing method. To increase the extraction efficiency, the pre-amplifier adopts a double-pass amplification structure. At a repetition rate of 50 Hz, 655 mJ pulse energy and 12.9 ns pulse width of 1053 nm laser is obtained from the master oscillator power amplifier system. The corresponding peak power is 51 MW. The optical-to-optical efficiency of the system is about 9.7%.展开更多
基金supported by the National Science Foundation of China(No.51607096)。
文摘For the advantages of easy realization and rapidly intelligent response,the one-cycle control was applied in five-phase six-leg switching power amplifier for magnetic bearing.This paper improves the one-cycle control considering resistance voltage drop and derives its mathematical models.The improved algorithm is compared with the former one.The simulation and experimental results show that the improved algorithm can effectively reduce the output current ripple,achieve good tracking of the given current,improve the control accuracy,and verify the effectiveness and superiority of the method.
文摘Quasi-PID control method that is able to effectively inhibit the inherent tracking error of PI control method is proposed on the basis of a rounded theoretical analysis of a model of switching power amplifiers (SPAs). To avoid the harmful impacts of the circuit parameter variations and the random disturbances on quasi-PID control method, a single neuron is introduced to endow it with self-adaptability. Quasi-PID control method and the single neuron combine with each other perfectly, and their formation is named as single-neuron adaptive quasi-PID control method. Simulation and experimental results show that single-neuron adaptive quasi-PID control method can accurately track both the predictable and the unpredictable waveforms. Quantitative analysis demonstrates that the accuracy of single-neuron adaptive quasi-PID control method is comparable to that of linear power amplifiers (LPAs) and so can fulfill the requirements of some high-accuracy applications, such as protective relay test. Such accuracy is very difficult to be achieved by many modern control methods for converter controls. Compared with other modern control methods, the programming realization of single-neuron adaptive quasi-PID control method is more suitable for real-time applications and realization on low-end microprocessors for its simple structure and lower computational complexity.
基金Sponsored by the Power Electronics Science and Education Development Program of Delta Environmental & Educational Foundation ( Grant No.DREO2006010).
文摘This paper proposes a novel implementation strategy for soft switching PFC whose circuit is simple and can achieve low voltage output directly. The main circuit adopts current mode full-bridge converter and all the power switches can realize ZCS or ZVS in the way of phase-shlfted control, using the leakage inductance of the transformer, the junction capacitor of the switches and the stored energy of the output capacitor. The problems such as the function of phase-shlfted link in control circuit, the implementation conditions of soft switching and bias restrained are analyzed. The adoption of constant frequency PWM control makes the design of the input and output filter link and the high frequency transformer simple. The transformation ratio regulation so as to achieve low voltage output and electrical insulation can be realized by using high frequency transformer.
文摘A laser-diode-pumped high-pulse-energy Nd:LiYF4 master oscillator power amplifier 1053 nm laser system is demonstrated. We design a home-made pump module to homogenize the pump intensity through the ray tracing method. To increase the extraction efficiency, the pre-amplifier adopts a double-pass amplification structure. At a repetition rate of 50 Hz, 655 mJ pulse energy and 12.9 ns pulse width of 1053 nm laser is obtained from the master oscillator power amplifier system. The corresponding peak power is 51 MW. The optical-to-optical efficiency of the system is about 9.7%.