Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic st...Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic stress conditions.Under these conditions,it is assumed that the intermediate principal stress(σ_(2))equals the minimum principal stress(σ_(3)).This assumption overlooks the potential variations in magnitudes of in situ stress conditions along all three directions near an underground opening where a rock bolt is installed.In this study,a series of push tests was meticulously conducted under triaxial conditions.These tests involved applying non-uniform confining stresses(σ_(2)≠σ_(3))to cubic specimens,aiming to unveil the previously overlooked influence of intermediate principal stresses on the strength properties of rock bolts.The results show that as the confining stresses increase from zero to higher levels,the pre-failure behavior changes from linear to nonlinear forms,resulting in an increase in initial stiffness from 2.08 kN/mm to 32.51 kN/mm.The load-displacement curves further illuminate distinct post-failure behavior at elevated levels of confining stresses,characterized by enhanced stiffness.Notably,the peak load capacity ranged from 27.9 kN to 46.5 kN as confining stresses advanced from σ_(2)=σ_(3)=0 to σ_(2)=20 MPa and σ_(3)=10 MPa.Additionally,the outcomes highlight an influence of confining stress on the lateral deformation of samples.Lower levels of confinement prompt overall dilation in lateral deformation,while higher confinements maintain a state of shrinkage.Furthermore,diverse failure modes have been identified,intricately tied to the arrangement of confining stresses.Lower confinements tend to induce a splitting mode of failure,whereas higher loads bring about a shift towards a pure interfacial shear-off and shear-crushed failure mechanism.展开更多
This paper presents the static and fatigue tests of hybrid(bonded/bolted)glass fiber reinforced polymer(GFRP)joints.Nine specimens of single-lap hybrid GFRP joints have been fabricated to study the static and fatigue ...This paper presents the static and fatigue tests of hybrid(bonded/bolted)glass fiber reinforced polymer(GFRP)joints.Nine specimens of single-lap hybrid GFRP joints have been fabricated to study the static and fatigue behaviors in the experimental campaign.The static tests of uniaxial tension loading are first conducted,from which the static ultimate bearing capacities of the joints are obtained.High-cycle fatigue tests are subsequently carried out so that the fatigue failure mode,fatigue life,and stiffness degradation of joints can be obtained.The measuring techniques including acoustic emission monitoring and three-dimensional digital image correlation have been employed in the tests to record the damage development process.The results revealed that the static strength and fatigue behavior of such thick hybrid GFRP joints were controlled by the bolted connections.The four stages of fatigue failure process are obtained from tests and acoustic emission signals analysis:cumulative damage of adhesive layer,damage of the adhesive layer,cumulative damage of GFRP plate,and damage of GFRP plate.The fatigue life and stiffness degradation can be improved by more bolts.The S-N(fatigue stress versus life)curves for the fatigue design of the single-lap hybrid GFRP joints under uniaxial tension loading are also proposed.展开更多
Hybrid bonded/bolted(HBB) joint has been widely used in engineering practice because it can overcome the potential weakness of pure bonded and pure bolted joints. However, studies on HBB joint are still at the initial...Hybrid bonded/bolted(HBB) joint has been widely used in engineering practice because it can overcome the potential weakness of pure bonded and pure bolted joints. However, studies on HBB joint are still at the initial stage. In this paper, tensile properties of a composite–metal singlelap HBB joint was investigated experimentally. And a detailed finite element model(FEM) was established to simulate the tensile behavior of the joint. The model was verified by the experimental results. Then the damage propagation and load transfer mechanism were explored based on the FEM. The results show that the HBB joint can provide multi-load transmission paths and resist damage propagation in the adhesive. The HBB joint has higher strength and energy absorption capacity than the pure bonded joint. And the HBB joint has greater initial damage load and tensile stiffness than pure bolted joint. Adhesive fillets can obviously improve the tensile performances of the HBB joint. Lateral stiffness of the joint boundary and testing machine show obvious effects on tensile performances of single-lap hybrid joints.展开更多
A composite structure with frame and skin based on cabin structure in a large space telescope is studied in this paper.The frame is composed of longitudinal and transverse beams with hybrid bonded/bolted joints,and th...A composite structure with frame and skin based on cabin structure in a large space telescope is studied in this paper.The frame is composed of longitudinal and transverse beams with hybrid bonded/bolted joints,and the skin is connected to the frame by bolts.Tensile tests are conducted on the structure by a set of test stand.It is observed that residual deformation occurs in the first test of the structure,which is attributed to the relative sliding between the skin and frame because of bolt-hole clearances.The high tightening torque and the increased number of the skin-frame bolts contribute to the high stiffness of the structure.A finite element model(FEM)of this composite structure is established,and the simulation model is verified by the experimental results.The FEM is contrastively analyzed with different frame joints,and it is found that adhesive joining in the hybrid bonded/bolted joints enhances the stiffness of the structure significantly.Given that adhesive plays a leading role in the stiffness of the hybrid joints,Tie contact in FEM is proposed to simulate bonded or hybrid joints when studying the stiffness performance of undamaged structure.展开更多
文摘Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic stress conditions.Under these conditions,it is assumed that the intermediate principal stress(σ_(2))equals the minimum principal stress(σ_(3)).This assumption overlooks the potential variations in magnitudes of in situ stress conditions along all three directions near an underground opening where a rock bolt is installed.In this study,a series of push tests was meticulously conducted under triaxial conditions.These tests involved applying non-uniform confining stresses(σ_(2)≠σ_(3))to cubic specimens,aiming to unveil the previously overlooked influence of intermediate principal stresses on the strength properties of rock bolts.The results show that as the confining stresses increase from zero to higher levels,the pre-failure behavior changes from linear to nonlinear forms,resulting in an increase in initial stiffness from 2.08 kN/mm to 32.51 kN/mm.The load-displacement curves further illuminate distinct post-failure behavior at elevated levels of confining stresses,characterized by enhanced stiffness.Notably,the peak load capacity ranged from 27.9 kN to 46.5 kN as confining stresses advanced from σ_(2)=σ_(3)=0 to σ_(2)=20 MPa and σ_(3)=10 MPa.Additionally,the outcomes highlight an influence of confining stress on the lateral deformation of samples.Lower levels of confinement prompt overall dilation in lateral deformation,while higher confinements maintain a state of shrinkage.Furthermore,diverse failure modes have been identified,intricately tied to the arrangement of confining stresses.Lower confinements tend to induce a splitting mode of failure,whereas higher loads bring about a shift towards a pure interfacial shear-off and shear-crushed failure mechanism.
基金the National Natural Science Foundation of China(No.51978400)。
文摘This paper presents the static and fatigue tests of hybrid(bonded/bolted)glass fiber reinforced polymer(GFRP)joints.Nine specimens of single-lap hybrid GFRP joints have been fabricated to study the static and fatigue behaviors in the experimental campaign.The static tests of uniaxial tension loading are first conducted,from which the static ultimate bearing capacities of the joints are obtained.High-cycle fatigue tests are subsequently carried out so that the fatigue failure mode,fatigue life,and stiffness degradation of joints can be obtained.The measuring techniques including acoustic emission monitoring and three-dimensional digital image correlation have been employed in the tests to record the damage development process.The results revealed that the static strength and fatigue behavior of such thick hybrid GFRP joints were controlled by the bolted connections.The four stages of fatigue failure process are obtained from tests and acoustic emission signals analysis:cumulative damage of adhesive layer,damage of the adhesive layer,cumulative damage of GFRP plate,and damage of GFRP plate.The fatigue life and stiffness degradation can be improved by more bolts.The S-N(fatigue stress versus life)curves for the fatigue design of the single-lap hybrid GFRP joints under uniaxial tension loading are also proposed.
文摘Hybrid bonded/bolted(HBB) joint has been widely used in engineering practice because it can overcome the potential weakness of pure bonded and pure bolted joints. However, studies on HBB joint are still at the initial stage. In this paper, tensile properties of a composite–metal singlelap HBB joint was investigated experimentally. And a detailed finite element model(FEM) was established to simulate the tensile behavior of the joint. The model was verified by the experimental results. Then the damage propagation and load transfer mechanism were explored based on the FEM. The results show that the HBB joint can provide multi-load transmission paths and resist damage propagation in the adhesive. The HBB joint has higher strength and energy absorption capacity than the pure bonded joint. And the HBB joint has greater initial damage load and tensile stiffness than pure bolted joint. Adhesive fillets can obviously improve the tensile performances of the HBB joint. Lateral stiffness of the joint boundary and testing machine show obvious effects on tensile performances of single-lap hybrid joints.
基金Supported by the National Natural Science Foundation of China(No.51805510)Science and Technology Development Plan Project of Jilin Province(No.20200201294JC)。
文摘A composite structure with frame and skin based on cabin structure in a large space telescope is studied in this paper.The frame is composed of longitudinal and transverse beams with hybrid bonded/bolted joints,and the skin is connected to the frame by bolts.Tensile tests are conducted on the structure by a set of test stand.It is observed that residual deformation occurs in the first test of the structure,which is attributed to the relative sliding between the skin and frame because of bolt-hole clearances.The high tightening torque and the increased number of the skin-frame bolts contribute to the high stiffness of the structure.A finite element model(FEM)of this composite structure is established,and the simulation model is verified by the experimental results.The FEM is contrastively analyzed with different frame joints,and it is found that adhesive joining in the hybrid bonded/bolted joints enhances the stiffness of the structure significantly.Given that adhesive plays a leading role in the stiffness of the hybrid joints,Tie contact in FEM is proposed to simulate bonded or hybrid joints when studying the stiffness performance of undamaged structure.