This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare ...This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare model results for each case. The numerical modelling has been, carried out using the suitable code LS-DYNA. This code integrates blast load routine(CONWEP) for the explosive description and four different material models for the concrete including: Karagozian & Case Concrete, Winfrith, Continuous Surface Cap Model and Riedel-Hiermaier-Thoma models, with concrete meshing based on 10, 15, and 20 mm. Six full-scale beams were tested: four of them used for the initial calibration of the numerical model and two more tests at lower scaled distances. For calibration, field data obtained employing pressure and accelerometers transducers were compared with the results derived from the numerical simulation. Damage surfaces and the shape of rupture in the beams have been used as references for comparison. Influence of the meshing on accelerations has been put in evidence and for some models the shape and size of the damage in the beams produced maximum differences around 15%. In all cases, the variations between material and mesh models are shown and discussed.展开更多
In this paper,to study the mechanical responses of a solid propellant subjected to ultrahigh acceleration overload during the gun-launch process,specifically designed projectile flight tests with an onboard measuremen...In this paper,to study the mechanical responses of a solid propellant subjected to ultrahigh acceleration overload during the gun-launch process,specifically designed projectile flight tests with an onboard measurement system were performed.Two projectiles containing dummy HTPB propellant grains were successfully recovered after the flight tests with an ultrahigh acceleration overload value of 8100 g.The onboard-measured time-resolved axial displacement,contact stress and overload values were successfully obtained and analysed.Uniaxial compression tests of the dummy HTPB propellant used in the gunlaunched tests were carried out at low and intermediate strain rates to characterize the propellant's dynamic properties.A linear viscoelastic constitutive model was employed and applied in finite-element simulations of the projectile-launching process.During the launch process,the dummy propellant grain exhibited large deformation due to the high acceleration overload,possibly leading to friction between the motor case and propellant grain.The calculated contact stress showed good agreement with the experimental results,though discrepancies in the overall displacement of the dummy propellant grain were observed.The dynamic mechanical response process of the dummy propellant grain was analysed in detail.The results can be used to estimate the structural integrity of the analysed dummy propellant grain during the gun-launch process.展开更多
Pipeline transport of hydrogen is one of today’s economic and environmental challenges.In order to find safe and reliable application of both existing gas and build new pipelines,it is essential to carry out tests on...Pipeline transport of hydrogen is one of today’s economic and environmental challenges.In order to find safe and reliable application of both existing gas and build new pipelines,it is essential to carry out tests on full-scale pipeline section,including the potentially more dangerous places than the main pipe,the girth welds.For the investigations,pipeline sections of P355NH steel with girth welds were prepared and exposed to pure hydrogen at twice the maximum allowable operating pressure for 41 days.Subsequently,full-scale burst tests were carried out and specimens were cut and prepared from the typical locations of the failed pipeline sections for mechanical,and macro-and microstructural investigations.The results obtained were evaluated and compared with data from previous full-scale tests on pipeline sections without hydrogen exposure.The results showed differences in the behavior of pipeline sections loaded in different ways,with different characteristics of the materials and the welded joints,both in the cases without hydrogen exposure and in the cases exposed to hydrogen.展开更多
Motivated by the huge practical engineering demand for the fundamental understanding of mechanical characteristics of high-speed railway infrastructure,a fullscale multi-functional test platform for high-speed railway...Motivated by the huge practical engineering demand for the fundamental understanding of mechanical characteristics of high-speed railway infrastructure,a fullscale multi-functional test platform for high-speed railway track–subgrade system is developed in this paper,and its main functions for investigating the mechanical performance of track–subgrade systems are elaborated with three typical experimental examples.Comprising the full-scale subgrade structure and all the five types of track structures adopted in Chinese high-speed railways,namely the CRTS I,the CRTS II and the CRTS III ballastless tracks,the double-block ballastless track and the ballasted track,the test platform is established strictly according to the construction standard of Chinese high-speed railways.Three kinds of effective loading methods are employed,including the real bogie loading,multi-point loading and the impact loading.Various types of sensors are adopted in different components of the five types of track–subgrade systems to measure the displacement,acceleration,pressure,structural strain and deformation,etc.Utilizing this test platform,both dynamic characteristics and long-term performance evolution of high-speed railway track–subgrade systems can be investigated,being able to satisfy the actual demand for large-scale operation of Chinese high-speed railways.As examples,three typical experimental studies are presented to elucidate the comprehensive functionalities of the full-scale multi-functional test platform for exploring the dynamic performance and its long-term evolution of ballastless track systems and for studying the long-term accumulative settlement of the ballasted track–subgrade system in high-speed railways.Some interesting phenomena and meaningful results are captured by the developed test platform,which provide a useful guidance for the scientific operation and maintenance of high-speed railway infrastructure.展开更多
Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensiona...Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads.展开更多
Rock has mechanical characteristics and a fracture damage mechanism that are closely related to its loading history and loading path. The mechanical properties, fracture damage features, acoustic emission(AE) characte...Rock has mechanical characteristics and a fracture damage mechanism that are closely related to its loading history and loading path. The mechanical properties, fracture damage features, acoustic emission(AE) characteristics, and strain energy evolution of the Beishan shallow-layer granite used in triaxial unloading tests were investigated in this study. Three groups of triaxial tests, namely, conventional triaxial compression test(Group Ⅰ), maintaining deviatoric stress synchronously unloading confining pressure test(Group Ⅱ), and loading axial pressure synchronously unloading confining pressure test(Group Ⅲ), were carried out for the cylindrical granite specimens. AE monitoring device was utilized in these tests to determine the degree to which the AE waves and AE events reflected the degree of rock damage. In addition, the crack stress thresholds of the specimens were determined by volumetric strain method and AE parameter method, and strain energy evolution of the rock was explored in different damage stages. The results show that the shallow-layer granite experiences brittle failure during the triaxial loading test and unloading test, and the rock has a greater damage degree during the unloading test. The crack stress thresholds of these samples vary greatly between tests, but the threshold ratios of all samples are similar in the same crack damage stage. The Mogi-Coulomb strength criterion can better describe the unloading failure strength of the rock. The evolution of the AE parameter characteristics and strain energy differs between the specimens used in different stress path tests. The dissipative strain energy is the largest in Group Ⅱ and the smallest in Group Ⅰ.展开更多
The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the...The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the mechanical properties and damage/fracture evolution mechanisms of deep rock induced by microdynamic disturbance under three-dimensional stress states are unclear.Therefore,a true triaxial multilevel disturbance test method is proposed,which can completely simulate natural geostress,excavation stress redistribution(such as stress unloading,concentration and rotation),and subsequently the microdynamic disturbance triggering damaged rock failure.Based on a dynamic true triaxial test platform,true triaxial microdynamic disturbance tests under different frequency and amplitudes were carried out on monzogabbro.The results show that increasing amplitude or decreasing frequency diminishes the failure strength of monzogabbro.Deformation modulus gradually decreases during disturbance failure.As frequency and amplitude increase,the degradation rate of deformation modulus decreases slightly,disturbance dissipated energy increases significantly,and disturbance deformation anisotropy strengthens obviously.A damage model has been proposed to quantitatively characterize the disturbance-induced damage evolution at different frequency and amplitude under true triaxial stress.Before disturbance failure,the micro-tensile crack mechanism is dominant,and the micro-shear crack mechanism increases significantly at failure.With the increase of amplitude and frequency,the micro-shear crack mechanism increases.When approaching disturbance failure,the acoustic emission fractal dimension changes from a stable value to local large oscillation,and finally increases sharply to a high value at failure.Finally,the disturbance-induced failure mechanism of surrounding rock in deep engineering is clearly elucidated.展开更多
Grouted rock bolts subject to axial loading in the field exhibit various failure modes,among which the most predominant one is the bolt-grout interface failure.Thus,mechanical characterization of the grout is essentia...Grouted rock bolts subject to axial loading in the field exhibit various failure modes,among which the most predominant one is the bolt-grout interface failure.Thus,mechanical characterization of the grout is essential for understanding its performance in ground support.To date,few studies have been conducted to characterize the mechanical behaviour of fiber-reinforced grout(FRG)in rock bolt reinforcement.Here we experimentally studied the mechanical behaviour of FRG under uniaxial compression,indirect tension,and direct shear loading conditions.We also conducted a series of pullout tests of rebar bolt encapsulated with different grouts including conventional cementitious grout and FRG.FRG was developed using 15%silica fume(SF)replacement of cement(by weight)and steel fiber to achieve highstrength and crack-resistance to overcome drawbacks of the conventional grout.Two types of steel fibers including straight and wavy steel fibers were further added to enhance the grout quality.The effect of fiber shape and fiber volume proportion on the grout mechanical properties were examined.Our experimental results showed that the addition of SF and steel fiber by 1.5%fiber volume proportion could lead to the highest compressive,tensile,and shear strengths of the grout.The minimum volume of fiber that could improve the mechanical properties of grout was found at 0.5%.The scanning electron microscopy(SEM)analysis demonstrated that steel fibers act as an excellent bridge to prevent the cracks from propagating at the interfacial region and hence to aid in maintaining the integrity of the cementitious grout.Our laboratory pullout tests further confirmed that FRG could prevent the cylindrical grout annulus from radial crack and hence improve the rebar’s load carrying capacity.Therefore,FRG has a potential to be utilized in civil and mining applications where high-strength and crack-resistance support is required.展开更多
The application of ductile rock bolts has been a crucial method for solving the problems of large deformations,energy absorption and stability control issues in deep rock masses.To study the anchoring mechanism of the...The application of ductile rock bolts has been a crucial method for solving the problems of large deformations,energy absorption and stability control issues in deep rock masses.To study the anchoring mechanism of the key expansive structure,this paper proposes a novel type of bolt—the Ductile-Expansion bolt,and conducts research on anchoring mechanics,energy absorption characteristics,and failure modes of the bolt.In addition,this paper defines the concept of load-volume ratio of metal rock bolts and proves the Ductile-Expansion bolt is capable of better improving the unit volume bearing capacity of the bolt material.Furthermore,laboratory and field tests verify the Ductile-Expansion bolt had better anchoring effect than the traditional rebar bolt,with the expansion structure favorably enhancing the ductility and energy absorption performance of the bolt.Finally,this paper microscopically analyzes the crack propagation and distribution morphology of the bolts by establishing a 3D coupled numerical model based on FDM-DEM.Numerical results illustrate the interface at the variable diameter of the Ductile-Expansion bolt serves as the transition zone between high and low stress levels.The expansion structure can impose radial compression on the medium around the bolt,which can improve the bolt anchorage performance.展开更多
A multi-purpose prototype test system is developed to study the mechanical behavior of tunnel sup-porting structure,including a modular counterforce device,a powerful loading equipment,an advanced intelligent manageme...A multi-purpose prototype test system is developed to study the mechanical behavior of tunnel sup-porting structure,including a modular counterforce device,a powerful loading equipment,an advanced intelligent management system and an efficient noncontact deformation measurement system.The functions of the prototype test system are adjustable size and shape of the modular counterforce structure,sufficient load reserve and accurate loading,multi-connection linkage intelligent management,and high-precision and continuously positioned noncontact deformation measurement.The modular counterforce structure is currently the largest in the world,with an outer diameter of 20.5 m,an inner diameter of 16.5 m and a height of 6 m.The case application proves that the prototype test system can reproduce the mechanical behavior of the tunnel lining during load-bearing,deformation and failure processes in detail.展开更多
The Stinger PDC cutter has high rock-breaking efficiency and excellent impact and wear resistance, which can significantly increase the rate of penetration (ROP) and extend PDC bit life for drilling hard and abrasive ...The Stinger PDC cutter has high rock-breaking efficiency and excellent impact and wear resistance, which can significantly increase the rate of penetration (ROP) and extend PDC bit life for drilling hard and abrasive formation. The knowledge of force response and mechanical specific energy (MSE) for the Stinger PDC cutter is of great importance for improving the cutter's performance and optimizing the hybrid PDC bit design. In this paper, 87 single cutter tests were conducted on the granite. A new method for precisely obtaining the rock broken volume was proposed. The influences of cutting depth, cutting angle, and cutting speed on cutting force and MSE were analyzed. Besides, a phenomenological cutting force model of the Stinger PDC cutter was established by regression of experimental data. Moreover, the surface topography and fracture morphology of the cutting groove and large size cuttings were measured by a 3D profilometer and a scanning electron microscope (SEM). Finally, the rock-breaking mechanism of the Stinger PDC cutter was illustrated. The results indicated that the cutting depth has the greatest influence on the cutting force and MSE, while the cutting speed has no obvious effects, especially at low cutting speeds. As the increase of cutting depth, the cutting force increases linearly, and MSE reduces with a quadratic polynomial relationship. When the cutting angle raises from 10° to 30°, the cutting force increases linearly, and the MSE firstly decreases and then increases. The optimal cutting angle for breaking rock is approximately 20°. The Stinger PDC cutter breaks granite mainly by high concentrated point loading and tensile failure, which can observably improve the rock breaking efficiency. The key findings of this work will help to reveal the rock-breaking mechanisms and optimize the cutter arrangement for the Stinger PDC cutter.展开更多
The application of self-compacting recycled concrete can solve the problem of environmental pollution caused by construction waste but its mechanical properties have not been unified and need further study.The strengt...The application of self-compacting recycled concrete can solve the problem of environmental pollution caused by construction waste but its mechanical properties have not been unified and need further study.The strength of recycled concrete is unstable,and its performance still needs further study.The combination of fixed sand and stone volume method and free water cement ratio method is used to determine the mix ratio of self-compacting recycled concrete.24 sets of slump expansion tests and 24 sets of cube axial compression tests were carried out to study the effect of recycled aggregate replacement rate on the flow performance and axial compressive strength of self-compacting recycled concrete,and the performance conversion formula of self-compacting recycled concrete was given.The results show that with the increase of the regenerated coarse aggregate substitution rate,the fluidity and filling property of the self-compacting regenerated concrete mix decreased.The failure of self-compacting recycled concrete is mainly due to the failure of strength between old mortar and new mixture.As the substitution rate increases from 0 to 100%,the axial compressive strength decreases by 15.2%.展开更多
In order to provide more insights into the damage propagation composite wind turbine blades(blade)under cyclic fatigue loading,a stiffness degradation model for blade is proposed based on the full-scale fatigue testin...In order to provide more insights into the damage propagation composite wind turbine blades(blade)under cyclic fatigue loading,a stiffness degradation model for blade is proposed based on the full-scale fatigue testing of a blade.A novel non-linear fatigue damage accumulation model is proposed using the damage assessment theories of composite laminates for the first time.Then,a stiffness degradation model is established based on the correlation of fatigue damage and residual stiffness of the composite laminates.Finally,a stiffness degradation model for the blade is presented based on the full-scale fatigue testing.The scientific rationale of the proposed stiffness model of blade is verified by using full-scale fatigue test data of blade with a total length of 52.5 m.The results indicate that the proposed stiffness degradation model of the blade agrees well with the fatigue testing results of this blade.This work provides a basis for evaluating the fatigue damage and lifetime of blade under cyclic fatigue loading.展开更多
A composite rubber concrete(CRC)was designed by combining waste tire rubber particles with particle sizes of 3~5 mm,1~3 mm and 20 mesh.Taking the rubber content of different particle sizes as the influencing factors,t...A composite rubber concrete(CRC)was designed by combining waste tire rubber particles with particle sizes of 3~5 mm,1~3 mm and 20 mesh.Taking the rubber content of different particle sizes as the influencing factors,the range and variance analysis of the mechanical and impermeability properties of CRC was carried out by orthogonal test.Through analysis,it is concluded that the optimal proportion of 3~5 mm,1~3 mm,and 20 mesh particle size composite rubber is 1:2.5:5.5 kinds of CRC and 3 kinds of ordinary single-mixed rubber concrete(RC)with a total content of 10%~20%were designed under this ratio,and the salt-freezing cycle test was carried out with a concentration of 5%Na 2 SO4 solution.The physical and mechanical damage laws during 120 salt-freezing cycles are obtained,and the corresponding damage prediction model is established according to the experimental data.The results show that:on the one hand,the composite rubber in CRC produces a more uniform“graded”structure,forms a retractable particle group,and reduces the loss of mechanical properties of CRC.On the other hand,colloidal particles with different particle sizes are used as air entraining agent to improve the pore structure of concrete and introduce evenly dispersed bubbles,which fundamentally improves the durability of concrete.Under the experimental conditions,the CRC performance is the best when the overall content of composite rubber is 15%.展开更多
The mechanical behavior of the test string in deep wells is generally relatively complex as a result of the high temperature and high pressure,severe dogleg and buckling effects,which in some circumstances can even le...The mechanical behavior of the test string in deep wells is generally relatively complex as a result of the high temperature and high pressure,severe dogleg and buckling effects,which in some circumstances can even lead to string failure.Traditional computational methods for the analysis of these behaviors are often inaccurate.For this reason,here a more accurate mechanical model of the test string is introduced by considering variables such as temperature,pressure,wellbore trajectory,and buckling,as well as combining them with the deformation and string constraint conditions brought in by changes in temperature and pressure during the tripping,setting,and test operations.The model is validated by applying it to a specific high-pressure gas well(located in Northeast Sichuan).展开更多
Each rock joint is unique by nature which means that utilization of replicas in direct shear tests is required in experimental parameter studies.However,a method to acquire knowledge about the ability of the replicas ...Each rock joint is unique by nature which means that utilization of replicas in direct shear tests is required in experimental parameter studies.However,a method to acquire knowledge about the ability of the replicas to imitate the shear mechanical behavior of the rock joint and their dispersion in direct shear testing is lacking.In this study,a novel method is presented for geometric quality assurance of replicas.The aim is to facilitate generation of high-quality direct shear testing data as a prerequisite for reliable subsequent analyses of the results.In Part 1 of this study,two quality assurance parameters,smf and V_(Hp100),are derived and their usefulness for evaluation of geometric deviations,i.e.geometric reproducibility,is shown.In Part 2,the parameters are validated by showing a correlation between the parameters and the shear mechanical behavior,which qualifies the parameters for usage in the quality assurance method.Unique results from direct shear tests presenting comparisons between replicas and the rock joint show that replicas fulfilling proposed threshold values of σ_(mf)<0.06 mm and|V_(Hp100)|<0.2 mm have a narrow dispersion and imitate the shear mechanical behavior of the rock joint in all aspects apart from having a slightly lower peak shear strength.The wear in these replicas,which have similar morphology as the rock joint,is in the same areas as in the rock joint.The wear is slightly larger in the rock joint and therefore the discrepancy in peak shear strength derives from differences in material properties,possibly from differences in toughness.It is shown by application of the suggested method that the quality assured replicas manufactured following the process employed in this study phenomenologically capture the shear strength characteristics,which makes them useful in parameter studies.展开更多
The mechanical properties of the SiC fiber-reinforced Mg-Al metal matrix composite materials have been studied on internal microstructure by (scanning electron microscopy) SEM in-situ tensile test. The emergence and p...The mechanical properties of the SiC fiber-reinforced Mg-Al metal matrix composite materials have been studied on internal microstructure by (scanning electron microscopy) SEM in-situ tensile test. The emergence and propagation of the crack, and the fracture behavior in materials have been observed and studied. It is found that in the case of the tensile test, the crack emerged in SiC fiber initially. In the case of the strong cohesion of the fiber-metal interface, the crack propagated in the fiber, meanwhile the fibers in the neighborhood of the cracked fiber began to crack and the Mg-Al metal deformed plastically, and at last the material fractured. Otherwise the toughness of the materials grows in the case of the lower cohesion of the fiber-metal matrix interface.展开更多
The effect of a variety of geometrics, initial conditions and material properties on the deformation behavior of thin films in the plane-strain bulge test was systematically scrutinized by performing the finite elemen...The effect of a variety of geometrics, initial conditions and material properties on the deformation behavior of thin films in the plane-strain bulge test was systematically scrutinized by performing the finite element analysis, and then the accuracy of the plane-strain bulge test in determining the mechanical properties of thin films in terms of our finite element results was analyzed. The results indicate that although the determination of the plane-strain modulus in the light of the plane-strain bulge equation is fairly accurate, the calculation of the residual stress is not satisfied as expected, especially for low residual stress. Finally, an approach is proposed for analyzing bulge test data, which will improve the accuracy and reliability of this bulge test technique.展开更多
Investigations on the dynamic mechanical properties and failure mechanisms of coal under in-situ stress is essential for the prevention of dynamic disasters in deep coal mines.Thus,a modified true triaxial Hopkinson b...Investigations on the dynamic mechanical properties and failure mechanisms of coal under in-situ stress is essential for the prevention of dynamic disasters in deep coal mines.Thus,a modified true triaxial Hopkinson bar was employed to explore the dynamic mechanical behaviors of coal at different confining pressures(0–20 MPa)and strain rates(40–220 s^(-1)).The results show that the dynamic peak stress is positively correlated with lateral static pre-stressσy andσz,but negatively correlated with axial static prestressσx.At approximate strain rates,increasing the lateral static pre-stress facilitates increasing the dynamic peak stress,but the minimum lateral static pre-stress is the primary factor limiting a significant increase in dynamic peak stress of coal.Furthermore,the dynamic differential stress is linearly related to the logarithm of strain rate,and the peak strain varies linearly with strain rate.However,there is no significant correlation between confining pressure and peak strain.Moreover,X-ray CT images and photographic fracture observations of coal samples show the failure patterns under uniaxial and triaxial conditions are splitting failure and shear failure,respectively.The device provides a viable approach for fully comprehending the dynamic mechanical behaviors of rock-like material in complex stress conditions.展开更多
As a widely-applied engineering material in cold regions, the frozen subgrade soils are usually subjected to seismic loading, which are also dramatically influenced by the freeze-thaw(F-T)cycles due to the varying tem...As a widely-applied engineering material in cold regions, the frozen subgrade soils are usually subjected to seismic loading, which are also dramatically influenced by the freeze-thaw(F-T)cycles due to the varying temperature. A series of dynamic cyclic triaxial experiments were conducted through a cryogenic triaxial apparatus for exploring the influences of F-T cycles on the dynamic mechanical properties of frozen subgrade clay.According to the experimental results of frozen clay at the temperature of-10℃, the dynamic responses and microstructure variation at different times of F-T cycles(0, 1, 5, and 20 cycles) were explored in detail.It is experimentally demonstrated that the dynamic stress-strain curves and dynamic volumetric strain curves of frozen clay are significantly sparse after 20F-T cycles. Meanwhile, the cyclic number at failure(Nf) of the frozen specimen reduces by 89% after 20freeze-thaw cycles at a low ratio of the dynamic stress amplitude. In addition, with the increasing F-T cycles,the axial accumulative strain, residual deformation,and the value of damage variable of frozen clay increase, while the dynamic resilient modulus and dynamic strength decrease. Finally, the influence of the F-T cycles on the failure mechanisms of frozen clay was discussed in terms of the microstructure variation. These studies contribute to a better understanding of the fundamental changes in the dynamic mechanical of frozen soils exposed to F-T cycles in cold and seismic regions.展开更多
基金This research has been conducted under SEGTRANS project,funded by the Centre for Industrial Technological Development(CDTI,Government of Spain).
文摘This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare model results for each case. The numerical modelling has been, carried out using the suitable code LS-DYNA. This code integrates blast load routine(CONWEP) for the explosive description and four different material models for the concrete including: Karagozian & Case Concrete, Winfrith, Continuous Surface Cap Model and Riedel-Hiermaier-Thoma models, with concrete meshing based on 10, 15, and 20 mm. Six full-scale beams were tested: four of them used for the initial calibration of the numerical model and two more tests at lower scaled distances. For calibration, field data obtained employing pressure and accelerometers transducers were compared with the results derived from the numerical simulation. Damage surfaces and the shape of rupture in the beams have been used as references for comparison. Influence of the meshing on accelerations has been put in evidence and for some models the shape and size of the damage in the beams produced maximum differences around 15%. In all cases, the variations between material and mesh models are shown and discussed.
文摘In this paper,to study the mechanical responses of a solid propellant subjected to ultrahigh acceleration overload during the gun-launch process,specifically designed projectile flight tests with an onboard measurement system were performed.Two projectiles containing dummy HTPB propellant grains were successfully recovered after the flight tests with an ultrahigh acceleration overload value of 8100 g.The onboard-measured time-resolved axial displacement,contact stress and overload values were successfully obtained and analysed.Uniaxial compression tests of the dummy HTPB propellant used in the gunlaunched tests were carried out at low and intermediate strain rates to characterize the propellant's dynamic properties.A linear viscoelastic constitutive model was employed and applied in finite-element simulations of the projectile-launching process.During the launch process,the dummy propellant grain exhibited large deformation due to the high acceleration overload,possibly leading to friction between the motor case and propellant grain.The calculated contact stress showed good agreement with the experimental results,though discrepancies in the overall displacement of the dummy propellant grain were observed.The dynamic mechanical response process of the dummy propellant grain was analysed in detail.The results can be used to estimate the structural integrity of the analysed dummy propellant grain during the gun-launch process.
基金supported by the European Union and the Hungarian State,co-financed by the European Structural and Investment Funds in the framework of the GINOP-2.3.4-15-2016-00004 project。
文摘Pipeline transport of hydrogen is one of today’s economic and environmental challenges.In order to find safe and reliable application of both existing gas and build new pipelines,it is essential to carry out tests on full-scale pipeline section,including the potentially more dangerous places than the main pipe,the girth welds.For the investigations,pipeline sections of P355NH steel with girth welds were prepared and exposed to pure hydrogen at twice the maximum allowable operating pressure for 41 days.Subsequently,full-scale burst tests were carried out and specimens were cut and prepared from the typical locations of the failed pipeline sections for mechanical,and macro-and microstructural investigations.The results obtained were evaluated and compared with data from previous full-scale tests on pipeline sections without hydrogen exposure.The results showed differences in the behavior of pipeline sections loaded in different ways,with different characteristics of the materials and the welded joints,both in the cases without hydrogen exposure and in the cases exposed to hydrogen.
基金This work was supported by the National Natural Science Foundation of China[Grant Nos.11790283,51978587,51708457]the Program of Introducing Talents of Discipline to Universities(111 Project)[Grant No.B16041].
文摘Motivated by the huge practical engineering demand for the fundamental understanding of mechanical characteristics of high-speed railway infrastructure,a fullscale multi-functional test platform for high-speed railway track–subgrade system is developed in this paper,and its main functions for investigating the mechanical performance of track–subgrade systems are elaborated with three typical experimental examples.Comprising the full-scale subgrade structure and all the five types of track structures adopted in Chinese high-speed railways,namely the CRTS I,the CRTS II and the CRTS III ballastless tracks,the double-block ballastless track and the ballasted track,the test platform is established strictly according to the construction standard of Chinese high-speed railways.Three kinds of effective loading methods are employed,including the real bogie loading,multi-point loading and the impact loading.Various types of sensors are adopted in different components of the five types of track–subgrade systems to measure the displacement,acceleration,pressure,structural strain and deformation,etc.Utilizing this test platform,both dynamic characteristics and long-term performance evolution of high-speed railway track–subgrade systems can be investigated,being able to satisfy the actual demand for large-scale operation of Chinese high-speed railways.As examples,three typical experimental studies are presented to elucidate the comprehensive functionalities of the full-scale multi-functional test platform for exploring the dynamic performance and its long-term evolution of ballastless track systems and for studying the long-term accumulative settlement of the ballasted track–subgrade system in high-speed railways.Some interesting phenomena and meaningful results are captured by the developed test platform,which provide a useful guidance for the scientific operation and maintenance of high-speed railway infrastructure.
基金the financial support from the National Natural Science Foundation of China(No.52109119)the Guangxi Natural Science Foundation(No.2021GXNSFBA075030)+2 种基金the Guangxi Science and Technology Project(No.Guike AD20325002)the Chinese Postdoctoral Science Fund Project(No.2022 M723408)the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(China Institute of Water Resources and Hydropower Research)(No.IWHR-SKL-202202).
文摘Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads.
基金supported by the National Natural Science Foundation of China (Grant No. 52278420)the China Atomic Energy Authority (CAEA) for China’s URL Development Program and the Geological Disposal Program。
文摘Rock has mechanical characteristics and a fracture damage mechanism that are closely related to its loading history and loading path. The mechanical properties, fracture damage features, acoustic emission(AE) characteristics, and strain energy evolution of the Beishan shallow-layer granite used in triaxial unloading tests were investigated in this study. Three groups of triaxial tests, namely, conventional triaxial compression test(Group Ⅰ), maintaining deviatoric stress synchronously unloading confining pressure test(Group Ⅱ), and loading axial pressure synchronously unloading confining pressure test(Group Ⅲ), were carried out for the cylindrical granite specimens. AE monitoring device was utilized in these tests to determine the degree to which the AE waves and AE events reflected the degree of rock damage. In addition, the crack stress thresholds of the specimens were determined by volumetric strain method and AE parameter method, and strain energy evolution of the rock was explored in different damage stages. The results show that the shallow-layer granite experiences brittle failure during the triaxial loading test and unloading test, and the rock has a greater damage degree during the unloading test. The crack stress thresholds of these samples vary greatly between tests, but the threshold ratios of all samples are similar in the same crack damage stage. The Mogi-Coulomb strength criterion can better describe the unloading failure strength of the rock. The evolution of the AE parameter characteristics and strain energy differs between the specimens used in different stress path tests. The dissipative strain energy is the largest in Group Ⅱ and the smallest in Group Ⅰ.
基金the financial support from the National Natural Science Foundation of China(No.52109119)the Guangxi Natural Science Foundation(No.2021GXNSFBA075030)+2 种基金the Guangxi Science and Technology Project(No.Guike AD20325002)the Chinese Postdoctoral Science Fund Project(No.2022M723408)the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(China Institute of Water Resources and Hydropower Research)(No.IWHR-SKL-202202)。
文摘The far-field microdynamic disturbance caused by the excavation of deep mineral resources and underground engineering can induce surrounding rock damage in high-stress conditions and even lead to disasters.However,the mechanical properties and damage/fracture evolution mechanisms of deep rock induced by microdynamic disturbance under three-dimensional stress states are unclear.Therefore,a true triaxial multilevel disturbance test method is proposed,which can completely simulate natural geostress,excavation stress redistribution(such as stress unloading,concentration and rotation),and subsequently the microdynamic disturbance triggering damaged rock failure.Based on a dynamic true triaxial test platform,true triaxial microdynamic disturbance tests under different frequency and amplitudes were carried out on monzogabbro.The results show that increasing amplitude or decreasing frequency diminishes the failure strength of monzogabbro.Deformation modulus gradually decreases during disturbance failure.As frequency and amplitude increase,the degradation rate of deformation modulus decreases slightly,disturbance dissipated energy increases significantly,and disturbance deformation anisotropy strengthens obviously.A damage model has been proposed to quantitatively characterize the disturbance-induced damage evolution at different frequency and amplitude under true triaxial stress.Before disturbance failure,the micro-tensile crack mechanism is dominant,and the micro-shear crack mechanism increases significantly at failure.With the increase of amplitude and frequency,the micro-shear crack mechanism increases.When approaching disturbance failure,the acoustic emission fractal dimension changes from a stable value to local large oscillation,and finally increases sharply to a high value at failure.Finally,the disturbance-induced failure mechanism of surrounding rock in deep engineering is clearly elucidated.
文摘Grouted rock bolts subject to axial loading in the field exhibit various failure modes,among which the most predominant one is the bolt-grout interface failure.Thus,mechanical characterization of the grout is essential for understanding its performance in ground support.To date,few studies have been conducted to characterize the mechanical behaviour of fiber-reinforced grout(FRG)in rock bolt reinforcement.Here we experimentally studied the mechanical behaviour of FRG under uniaxial compression,indirect tension,and direct shear loading conditions.We also conducted a series of pullout tests of rebar bolt encapsulated with different grouts including conventional cementitious grout and FRG.FRG was developed using 15%silica fume(SF)replacement of cement(by weight)and steel fiber to achieve highstrength and crack-resistance to overcome drawbacks of the conventional grout.Two types of steel fibers including straight and wavy steel fibers were further added to enhance the grout quality.The effect of fiber shape and fiber volume proportion on the grout mechanical properties were examined.Our experimental results showed that the addition of SF and steel fiber by 1.5%fiber volume proportion could lead to the highest compressive,tensile,and shear strengths of the grout.The minimum volume of fiber that could improve the mechanical properties of grout was found at 0.5%.The scanning electron microscopy(SEM)analysis demonstrated that steel fibers act as an excellent bridge to prevent the cracks from propagating at the interfacial region and hence to aid in maintaining the integrity of the cementitious grout.Our laboratory pullout tests further confirmed that FRG could prevent the cylindrical grout annulus from radial crack and hence improve the rebar’s load carrying capacity.Therefore,FRG has a potential to be utilized in civil and mining applications where high-strength and crack-resistance support is required.
基金supported by the National Natural Science Foundation of China(Nos.52174101,52474169,and 42477202)Guangdong Basic and Applied Basic Research Foundation(Nos.2023A1515011634 and 2023A1515030243)the Department of Science and Technology of Guangdong Province,China(No.2021ZT09G087).
文摘The application of ductile rock bolts has been a crucial method for solving the problems of large deformations,energy absorption and stability control issues in deep rock masses.To study the anchoring mechanism of the key expansive structure,this paper proposes a novel type of bolt—the Ductile-Expansion bolt,and conducts research on anchoring mechanics,energy absorption characteristics,and failure modes of the bolt.In addition,this paper defines the concept of load-volume ratio of metal rock bolts and proves the Ductile-Expansion bolt is capable of better improving the unit volume bearing capacity of the bolt material.Furthermore,laboratory and field tests verify the Ductile-Expansion bolt had better anchoring effect than the traditional rebar bolt,with the expansion structure favorably enhancing the ductility and energy absorption performance of the bolt.Finally,this paper microscopically analyzes the crack propagation and distribution morphology of the bolts by establishing a 3D coupled numerical model based on FDM-DEM.Numerical results illustrate the interface at the variable diameter of the Ductile-Expansion bolt serves as the transition zone between high and low stress levels.The expansion structure can impose radial compression on the medium around the bolt,which can improve the bolt anchorage performance.
文摘A multi-purpose prototype test system is developed to study the mechanical behavior of tunnel sup-porting structure,including a modular counterforce device,a powerful loading equipment,an advanced intelligent management system and an efficient noncontact deformation measurement system.The functions of the prototype test system are adjustable size and shape of the modular counterforce structure,sufficient load reserve and accurate loading,multi-connection linkage intelligent management,and high-precision and continuously positioned noncontact deformation measurement.The modular counterforce structure is currently the largest in the world,with an outer diameter of 20.5 m,an inner diameter of 16.5 m and a height of 6 m.The case application proves that the prototype test system can reproduce the mechanical behavior of the tunnel lining during load-bearing,deformation and failure processes in detail.
基金supported by the Joint Funds of The National Natural Science Foundation of China(Grant No.U19B6003-05)the National Key Research and Development Program of China(No.2019YFA0708302)+2 种基金the National Science Fund for Distinguished Young Scholars(Grant No.51725404)the Beijing Outstanding Young Scientist Program(Grant No.BJJWZYJH01201911414038)the Strategic Cooperation Technology Projects of CNPC and CUPB(Grant No.ZLZX2020-01).
文摘The Stinger PDC cutter has high rock-breaking efficiency and excellent impact and wear resistance, which can significantly increase the rate of penetration (ROP) and extend PDC bit life for drilling hard and abrasive formation. The knowledge of force response and mechanical specific energy (MSE) for the Stinger PDC cutter is of great importance for improving the cutter's performance and optimizing the hybrid PDC bit design. In this paper, 87 single cutter tests were conducted on the granite. A new method for precisely obtaining the rock broken volume was proposed. The influences of cutting depth, cutting angle, and cutting speed on cutting force and MSE were analyzed. Besides, a phenomenological cutting force model of the Stinger PDC cutter was established by regression of experimental data. Moreover, the surface topography and fracture morphology of the cutting groove and large size cuttings were measured by a 3D profilometer and a scanning electron microscope (SEM). Finally, the rock-breaking mechanism of the Stinger PDC cutter was illustrated. The results indicated that the cutting depth has the greatest influence on the cutting force and MSE, while the cutting speed has no obvious effects, especially at low cutting speeds. As the increase of cutting depth, the cutting force increases linearly, and MSE reduces with a quadratic polynomial relationship. When the cutting angle raises from 10° to 30°, the cutting force increases linearly, and the MSE firstly decreases and then increases. The optimal cutting angle for breaking rock is approximately 20°. The Stinger PDC cutter breaks granite mainly by high concentrated point loading and tensile failure, which can observably improve the rock breaking efficiency. The key findings of this work will help to reveal the rock-breaking mechanisms and optimize the cutter arrangement for the Stinger PDC cutter.
文摘The application of self-compacting recycled concrete can solve the problem of environmental pollution caused by construction waste but its mechanical properties have not been unified and need further study.The strength of recycled concrete is unstable,and its performance still needs further study.The combination of fixed sand and stone volume method and free water cement ratio method is used to determine the mix ratio of self-compacting recycled concrete.24 sets of slump expansion tests and 24 sets of cube axial compression tests were carried out to study the effect of recycled aggregate replacement rate on the flow performance and axial compressive strength of self-compacting recycled concrete,and the performance conversion formula of self-compacting recycled concrete was given.The results show that with the increase of the regenerated coarse aggregate substitution rate,the fluidity and filling property of the self-compacting regenerated concrete mix decreased.The failure of self-compacting recycled concrete is mainly due to the failure of strength between old mortar and new mixture.As the substitution rate increases from 0 to 100%,the axial compressive strength decreases by 15.2%.
基金supported by the Science and Technology Programs of Gansu Province,China(Nos.21JR1RA248,20JR10RA264)the Young Scholars Science Foundation of Lanzhou Jiaotong University,China(Nos.2020039,2020017)the Special Funds for Guiding Local Scientific and Technological Development by the Central Government,China(No.22ZY1QA005)。
文摘In order to provide more insights into the damage propagation composite wind turbine blades(blade)under cyclic fatigue loading,a stiffness degradation model for blade is proposed based on the full-scale fatigue testing of a blade.A novel non-linear fatigue damage accumulation model is proposed using the damage assessment theories of composite laminates for the first time.Then,a stiffness degradation model is established based on the correlation of fatigue damage and residual stiffness of the composite laminates.Finally,a stiffness degradation model for the blade is presented based on the full-scale fatigue testing.The scientific rationale of the proposed stiffness model of blade is verified by using full-scale fatigue test data of blade with a total length of 52.5 m.The results indicate that the proposed stiffness degradation model of the blade agrees well with the fatigue testing results of this blade.This work provides a basis for evaluating the fatigue damage and lifetime of blade under cyclic fatigue loading.
基金supported by the National Key Research and Development Program of China under the Grant No.2018YFC0809400.
文摘A composite rubber concrete(CRC)was designed by combining waste tire rubber particles with particle sizes of 3~5 mm,1~3 mm and 20 mesh.Taking the rubber content of different particle sizes as the influencing factors,the range and variance analysis of the mechanical and impermeability properties of CRC was carried out by orthogonal test.Through analysis,it is concluded that the optimal proportion of 3~5 mm,1~3 mm,and 20 mesh particle size composite rubber is 1:2.5:5.5 kinds of CRC and 3 kinds of ordinary single-mixed rubber concrete(RC)with a total content of 10%~20%were designed under this ratio,and the salt-freezing cycle test was carried out with a concentration of 5%Na 2 SO4 solution.The physical and mechanical damage laws during 120 salt-freezing cycles are obtained,and the corresponding damage prediction model is established according to the experimental data.The results show that:on the one hand,the composite rubber in CRC produces a more uniform“graded”structure,forms a retractable particle group,and reduces the loss of mechanical properties of CRC.On the other hand,colloidal particles with different particle sizes are used as air entraining agent to improve the pore structure of concrete and introduce evenly dispersed bubbles,which fundamentally improves the durability of concrete.Under the experimental conditions,the CRC performance is the best when the overall content of composite rubber is 15%.
文摘The mechanical behavior of the test string in deep wells is generally relatively complex as a result of the high temperature and high pressure,severe dogleg and buckling effects,which in some circumstances can even lead to string failure.Traditional computational methods for the analysis of these behaviors are often inaccurate.For this reason,here a more accurate mechanical model of the test string is introduced by considering variables such as temperature,pressure,wellbore trajectory,and buckling,as well as combining them with the deformation and string constraint conditions brought in by changes in temperature and pressure during the tripping,setting,and test operations.The model is validated by applying it to a specific high-pressure gas well(located in Northeast Sichuan).
文摘Each rock joint is unique by nature which means that utilization of replicas in direct shear tests is required in experimental parameter studies.However,a method to acquire knowledge about the ability of the replicas to imitate the shear mechanical behavior of the rock joint and their dispersion in direct shear testing is lacking.In this study,a novel method is presented for geometric quality assurance of replicas.The aim is to facilitate generation of high-quality direct shear testing data as a prerequisite for reliable subsequent analyses of the results.In Part 1 of this study,two quality assurance parameters,smf and V_(Hp100),are derived and their usefulness for evaluation of geometric deviations,i.e.geometric reproducibility,is shown.In Part 2,the parameters are validated by showing a correlation between the parameters and the shear mechanical behavior,which qualifies the parameters for usage in the quality assurance method.Unique results from direct shear tests presenting comparisons between replicas and the rock joint show that replicas fulfilling proposed threshold values of σ_(mf)<0.06 mm and|V_(Hp100)|<0.2 mm have a narrow dispersion and imitate the shear mechanical behavior of the rock joint in all aspects apart from having a slightly lower peak shear strength.The wear in these replicas,which have similar morphology as the rock joint,is in the same areas as in the rock joint.The wear is slightly larger in the rock joint and therefore the discrepancy in peak shear strength derives from differences in material properties,possibly from differences in toughness.It is shown by application of the suggested method that the quality assured replicas manufactured following the process employed in this study phenomenologically capture the shear strength characteristics,which makes them useful in parameter studies.
文摘The mechanical properties of the SiC fiber-reinforced Mg-Al metal matrix composite materials have been studied on internal microstructure by (scanning electron microscopy) SEM in-situ tensile test. The emergence and propagation of the crack, and the fracture behavior in materials have been observed and studied. It is found that in the case of the tensile test, the crack emerged in SiC fiber initially. In the case of the strong cohesion of the fiber-metal interface, the crack propagated in the fiber, meanwhile the fibers in the neighborhood of the cracked fiber began to crack and the Mg-Al metal deformed plastically, and at last the material fractured. Otherwise the toughness of the materials grows in the case of the lower cohesion of the fiber-metal matrix interface.
基金Project(11172258)supported by the National Natural Science Foundation of China
文摘The effect of a variety of geometrics, initial conditions and material properties on the deformation behavior of thin films in the plane-strain bulge test was systematically scrutinized by performing the finite element analysis, and then the accuracy of the plane-strain bulge test in determining the mechanical properties of thin films in terms of our finite element results was analyzed. The results indicate that although the determination of the plane-strain modulus in the light of the plane-strain bulge equation is fairly accurate, the calculation of the residual stress is not satisfied as expected, especially for low residual stress. Finally, an approach is proposed for analyzing bulge test data, which will improve the accuracy and reliability of this bulge test technique.
基金the National Key Research and Development Program of China(Nos.2019YFE0118500 and 2019YFC1904304)National Natural Science Foundation of China(Nos.52104107 and U22A20598)Natural Science Foundation of Jiangsu Province(No.BK20200634).
文摘Investigations on the dynamic mechanical properties and failure mechanisms of coal under in-situ stress is essential for the prevention of dynamic disasters in deep coal mines.Thus,a modified true triaxial Hopkinson bar was employed to explore the dynamic mechanical behaviors of coal at different confining pressures(0–20 MPa)and strain rates(40–220 s^(-1)).The results show that the dynamic peak stress is positively correlated with lateral static pre-stressσy andσz,but negatively correlated with axial static prestressσx.At approximate strain rates,increasing the lateral static pre-stress facilitates increasing the dynamic peak stress,but the minimum lateral static pre-stress is the primary factor limiting a significant increase in dynamic peak stress of coal.Furthermore,the dynamic differential stress is linearly related to the logarithm of strain rate,and the peak strain varies linearly with strain rate.However,there is no significant correlation between confining pressure and peak strain.Moreover,X-ray CT images and photographic fracture observations of coal samples show the failure patterns under uniaxial and triaxial conditions are splitting failure and shear failure,respectively.The device provides a viable approach for fully comprehending the dynamic mechanical behaviors of rock-like material in complex stress conditions.
基金the National Natural Science Foundation of China (NSFC)(Grant Nos.U22A20596 and 41771066)the Science and Technology Project of Qinghai-Tibet Railway Company (QZ2021-G03)。
文摘As a widely-applied engineering material in cold regions, the frozen subgrade soils are usually subjected to seismic loading, which are also dramatically influenced by the freeze-thaw(F-T)cycles due to the varying temperature. A series of dynamic cyclic triaxial experiments were conducted through a cryogenic triaxial apparatus for exploring the influences of F-T cycles on the dynamic mechanical properties of frozen subgrade clay.According to the experimental results of frozen clay at the temperature of-10℃, the dynamic responses and microstructure variation at different times of F-T cycles(0, 1, 5, and 20 cycles) were explored in detail.It is experimentally demonstrated that the dynamic stress-strain curves and dynamic volumetric strain curves of frozen clay are significantly sparse after 20F-T cycles. Meanwhile, the cyclic number at failure(Nf) of the frozen specimen reduces by 89% after 20freeze-thaw cycles at a low ratio of the dynamic stress amplitude. In addition, with the increasing F-T cycles,the axial accumulative strain, residual deformation,and the value of damage variable of frozen clay increase, while the dynamic resilient modulus and dynamic strength decrease. Finally, the influence of the F-T cycles on the failure mechanisms of frozen clay was discussed in terms of the microstructure variation. These studies contribute to a better understanding of the fundamental changes in the dynamic mechanical of frozen soils exposed to F-T cycles in cold and seismic regions.