期刊文献+
共找到11,917篇文章
< 1 2 250 >
每页显示 20 50 100
Full-Scale Isogeometric Topology Optimization of Cellular Structures Based on Kirchhoff-Love Shells
1
作者 Mingzhe Huang Mi Xiao +3 位作者 Liang Gao Mian Zhou Wei Sha Jinhao Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2479-2505,共27页
Cellular thin-shell structures are widely applied in ultralightweight designs due to their high bearing capacity and strength-to-weight ratio.In this paper,a full-scale isogeometric topology optimization(ITO)method ba... Cellular thin-shell structures are widely applied in ultralightweight designs due to their high bearing capacity and strength-to-weight ratio.In this paper,a full-scale isogeometric topology optimization(ITO)method based on Kirchhoff-Love shells for designing cellular tshin-shell structures with excellent damage tolerance ability is proposed.This method utilizes high-order continuous nonuniform rational B-splines(NURBS)as basis functions for Kirchhoff-Love shell elements.The geometric and analysis models of thin shells are unified by isogeometric analysis(IGA)to avoid geometric approximation error and improve computational accuracy.The topological configurations of thin-shell structures are described by constructing the effective density field on the controlmesh.Local volume constraints are imposed in the proximity of each control point to obtain bone-like cellular structures.To facilitate numerical implementation,the p-norm function is used to aggregate local volume constraints into an equivalent global constraint.Several numerical examples are provided to demonstrate the effectiveness of the proposed method.After simulation and comparative analysis,the results indicate that the cellular thin-shell structures optimized by the proposed method exhibit great load-carrying behavior and high damage robustness. 展开更多
关键词 Cellular thin-shell structures isogeometric analysis full-scale topology optimization Kirchhoff–Love shells
下载PDF
Numerical analysis on seismic performance of underground structures in liquefiable interlayer sites from centrifuge shaking table test
2
作者 Yan Guanyu Xu Chengshun +2 位作者 Zhang Zihong Du Xiuli Wang Xuelai 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期781-798,共18页
When an underground structure passes through a liquefiable soil layer,the soil liquefaction may pose a significant threat to the structure.A centrifuge shaking table test was performed to research the seismic response... When an underground structure passes through a liquefiable soil layer,the soil liquefaction may pose a significant threat to the structure.A centrifuge shaking table test was performed to research the seismic response of underground structures in liquefiable interlayer sites,and a valid numerical model was obtained through simulation model test.Finally,the calibrated numerical model was used to perform further research on the influence of various distribution characteristics of liquefiable interlayers on the seismic reaction of underground structures.The key findings are as follows.The structure faces the most unfavorable condition once a liquefiable layer is located in the middle of the underground structure.When a liquefiable layer exists in the middle of the structure,the seismic reactions of both the underground structure and model site will increase with the rise of the thickness of the liquefiable interlayer.The inter-story drift of the structure in the non-liquefiable site is much smaller than that in the liquefiable interlayer site.The inter-story drift of the structure is not only associated with the site displacement and the soil-structure stiffness ratio but also closely associated with the slippage of the soil-structure contact interface under the condition of large deformation of the site. 展开更多
关键词 centrifuge shaking table test underground structure liquefiable interlayer sites seismic response validation of numerical model
下载PDF
A Full-Scale Optimization of a Crop Spatial Planting Structure and its Associated Effects
3
作者 Qi Liu Jun Niu +1 位作者 Taisheng Du Shaozhong Kang 《Engineering》 SCIE EI CAS CSCD 2023年第9期139-152,共14页
Driven by the concept of agricultural sustainable development,crop planting structure optimization(CPSO)has become an effective measure to reduce regional crop water demand,ensure food security,and protect the environ... Driven by the concept of agricultural sustainable development,crop planting structure optimization(CPSO)has become an effective measure to reduce regional crop water demand,ensure food security,and protect the environment.However,traditional optimization of crop planting structures often ignores the impact on regional food supply–demand relations and interprovincial food trading.Therefore,using a system analysis concept and taking virtual water output as the connecting point,this study proposes a theoretical CPSO framework based on a multi-aspect and full-scale evaluation index system.To this end,a water footprint(WF)simulation module denoted as soil and water assessment tool–water footprint(SWAT-WF)is constructed to simulate the amount and components of regional crop WFs.A multi-objective spatial CPSO model with the objectives of maximizing the regional economic water productivity(EWP),minimizing the blue water dependency(BWFrate),and minimizing the grey water footprint(GWFgrey)is established to achieve an optimal planting layout.Considering various benefits,a fullscale evaluation index system based on region,province,and country scales is constructed.Through an entropy weight technique for order preference by similarity to an ideal solution(TOPSIS)comprehensive evaluation model,the optimal plan is selected from a variety of CPSO plans.The proposed framework is then verified through a case study of the upper–middle reaches of the Heihe River Basin in Gansu province,China.By combining the theory of virtual water trading with system analysis,the optimal planting structure is found.While sacrificing reasonable regional economic benefits,the optimization of the planting structure significantly improves the regional water resource benefits and ecological benefits at different scales. 展开更多
关键词 Planting structure optimization full-scale evaluation index system Water footprint SWAT-WF module Interprovincial food trade Entropy weight TOPSIS
下载PDF
A compact X-band backward traveling-wave accelerating structure
4
作者 Xian-Cai Lin Hao Zha +4 位作者 Jia-Ru Shi Qiang Gao Fang-Jun Hu Qing-Zhu Li Huai-Bi Chen 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期13-29,共17页
Very high-energy electrons(VHEEs)are potential candidates for FLASH radiotherapy for deep-seated tumors.We proposed a compact VHEE facility based on an X-band high-gradient high-power technique.In this study,we invest... Very high-energy electrons(VHEEs)are potential candidates for FLASH radiotherapy for deep-seated tumors.We proposed a compact VHEE facility based on an X-band high-gradient high-power technique.In this study,we investigated and realized the first X-band backward traveling-wave(BTW)accelerating structure as the buncher for a VHEE facility.A method for calculating the parameters of single cell from the field distribution was introduced to simplify the design of the BTW structure.Time-domain circuit equations were applied to calculate the transient beam parameters of the buncher in the unsteady state.A prototype of the BTW structure with a thermionic cathode-diode electron gun was designed,fabricated,and tested at high power at the Tsinghua X-band high-power test stand.The structure successfully operated with 5-MW microwave pulses from the pulse compressor and outputted electron bunches with an energy of 8 MeV and a pulsed current of 108 mA. 展开更多
关键词 Backward traveling-wave accelerating structure Equivalent circuit model High-power test Very high-energy electron radiotherapy
下载PDF
Aseismic performances of constrained damping lining structures made of rubber-sand-concrete
5
作者 Xiancheng Mei Qian Sheng +4 位作者 Jian Chen Zhen Cui Jianhe Li Chuanqi Li Daniel Dias 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1522-1537,共16页
Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using ... Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using a rubber-sand-concrete(RSC)as the aseismic material,is proposed.The aseismic performances of constrained damping structure were investigated by a series of hammer impact tests.The damping layer thickness and shape effects on the aseismic performance such as effective duration and acceleration amplitude of time-domain analysis,composite loss factor and damping ratio of the transfer function analysis,and total vibration level of octave spectrum analysis were discussed.The hammer impact tests revealed that the relationship between the aseismic performance and damping layer thickness was not linear,and that the hollow damping layer had a better aseismic performance than the flat damping layer one.The aseismic performances of constrained damping structure under different seismicity magnitudes and geological conditions were investigated.The effects of the peak ground acceleration(PGA)and tunnel overburden depth on the aseismic performances such as the maximum principal stress and equivalent plastic strain(PEEQ)were discussed.The numerical results show the constrained damping structure proposed in this paper has a good aseismic performance,with PGA in the range(0.2-1.2)g and tunnel overburden depth in the range of 0-300 m. 展开更多
关键词 Constrained damping structure Aseismic performance Hammer impact tests Damping layer Peak ground acceleration Overburden depth
下载PDF
Testing method of rock structural plane using digital drilling
6
作者 Qi Wang Yuncai Wang +4 位作者 Bei Jiang Hongke Gao Fenglin Ma Dahu Zhai Songlin Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2563-2578,共16页
The rock mass consists of rock blocks and structural planes,which can reduce its integrity and strength.Therefore,accurately obtaining the characteristics of the rock mass structural plane is a prerequisite for evalua... The rock mass consists of rock blocks and structural planes,which can reduce its integrity and strength.Therefore,accurately obtaining the characteristics of the rock mass structural plane is a prerequisite for evaluating stability and designing supports in underground engineering.Currently,there are no effective testing methods for the characteristic parameters of the rock mass structural plane in underground engineering.The paper presents the digital drilling technology as a new testing method of rock mass structural planes.Flawed rock specimens with cracks of varying widths and angles were used to simulate the rock mass structural planes,and the multifunctional rock mass digital drilling test system was employed to carry out the digital drilling tests.The analysis focuses on the variation laws of drilling parameters,such as drilling pressure and drilling torque,affected by the characteristics of prefabricated cracks,and clarifies the degradation mechanism of rock equivalent compressive strength.Additionally,an identification model for the characteristic parameters of rock mass structural planes during drilling is established.The test results indicate that the average difference of the characteristics of prefabricated cracks identified by the equivalent compressive strength is 2.45°and 0.82 mm,respectively.The identification model while drilling is verified to be correct due to the high identification accuracy.Based on this,a method for testing the characteristic parameters of the surrounding rock structural plane while drilling is proposed.The research offers a theoretical and methodological foundation for precise in situ identification of structural planes of the surrounding rock in underground engineering. 展开更多
关键词 structural planes in the rock mass Digital drilling Drilling parameters Equivalent compressive strength testing method
下载PDF
A multi-purpose prototype test system for mechanical behavior of tunnel supporting structure: Development and application 被引量:1
7
作者 Hongbin Chen Xinhua You +1 位作者 Dajun Yuan Yang Ping 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第2期467-476,共10页
A multi-purpose prototype test system is developed to study the mechanical behavior of tunnel sup-porting structure,including a modular counterforce device,a powerful loading equipment,an advanced intelligent manageme... A multi-purpose prototype test system is developed to study the mechanical behavior of tunnel sup-porting structure,including a modular counterforce device,a powerful loading equipment,an advanced intelligent management system and an efficient noncontact deformation measurement system.The functions of the prototype test system are adjustable size and shape of the modular counterforce structure,sufficient load reserve and accurate loading,multi-connection linkage intelligent management,and high-precision and continuously positioned noncontact deformation measurement.The modular counterforce structure is currently the largest in the world,with an outer diameter of 20.5 m,an inner diameter of 16.5 m and a height of 6 m.The case application proves that the prototype test system can reproduce the mechanical behavior of the tunnel lining during load-bearing,deformation and failure processes in detail. 展开更多
关键词 Prototype test system Tunnel supporting structure Tunnel fire LINING Mechanical behavior
下载PDF
Regulation of Pore Structure and Hightemperature Fracture Behavior of CACbonded Alumina-Spinel Castables Based on Hydration Design
8
作者 Wenjing LIU Ning LIAO Yawei LI 《China's Refractories》 CAS 2024年第3期22-29,共8页
The lamellar hydrates of CAC were designed with the introduction of nano CaCO_(3)or Mg-Al hydrotalcite(M-A-H),and the effects on the green strength,pore structures,and high-temperature fracture behavior of alumina-spi... The lamellar hydrates of CAC were designed with the introduction of nano CaCO_(3)or Mg-Al hydrotalcite(M-A-H),and the effects on the green strength,pore structures,and high-temperature fracture behavior of alumina-spinel castables were investigated.The results show that nano CaCO_(3)or M-A-H stimulates rapidly the hydration of CAC and the formation of lamellar C_(4)AcH_(11)or coexistence of C_(2)AH_(8)and C_(4)AcH_(11)at 25℃.The formation of lamellar hydrates can contribute to a more complicated pore structure,especially in the range of 400-2000 nm.Meanwhile,the incorporation of well-distributed CaO or MgO sources from nano CaCO_(3)or M-A-H also regulates the distribution of CA_(6)and spinel(pre-formed and in-situ).Consequently,the optimized microstructure and complicated pore structure can induce the deflection and bridging of cracks,thus facilitating the consumption of fracture energy and enhancing the resistance to thermal stress damage. 展开更多
关键词 alumina-spinel castables lamellar hydrates pore structure high-temperature wedge splitting test fracture behavior
下载PDF
Stiffness Degradation Modeling for Composite Wind Turbine Blades Based on Full-Scale Fatigue Testing
9
作者 Haixia Kou Kongyuan Wei +1 位作者 Yanhu Liu Xuyao Zhang 《Journal of Beijing Institute of Technology》 EI CAS 2023年第4期517-528,共12页
In order to provide more insights into the damage propagation composite wind turbine blades(blade)under cyclic fatigue loading,a stiffness degradation model for blade is proposed based on the full-scale fatigue testin... In order to provide more insights into the damage propagation composite wind turbine blades(blade)under cyclic fatigue loading,a stiffness degradation model for blade is proposed based on the full-scale fatigue testing of a blade.A novel non-linear fatigue damage accumulation model is proposed using the damage assessment theories of composite laminates for the first time.Then,a stiffness degradation model is established based on the correlation of fatigue damage and residual stiffness of the composite laminates.Finally,a stiffness degradation model for the blade is presented based on the full-scale fatigue testing.The scientific rationale of the proposed stiffness model of blade is verified by using full-scale fatigue test data of blade with a total length of 52.5 m.The results indicate that the proposed stiffness degradation model of the blade agrees well with the fatigue testing results of this blade.This work provides a basis for evaluating the fatigue damage and lifetime of blade under cyclic fatigue loading. 展开更多
关键词 composite wind turbine blades fatigue damage stiffness degradation model full-scale fatigue testing
下载PDF
Fundamental Study on Response Properties of Structures Constructed on Lunar Regolith
10
作者 Yuji Miyamoto Takaharu Nakano Toshio Kobayashi 《Open Journal of Earthquake Research》 2024年第1期27-40,共14页
The Artemis Program, for constructing the lunar base, is in progress. How to design and construct architectural and civil engineering structures in the lunar environment has become an important issue. The lunar surfac... The Artemis Program, for constructing the lunar base, is in progress. How to design and construct architectural and civil engineering structures in the lunar environment has become an important issue. The lunar surface is covered with soft sand, called regolith, and it is required to protect lunar bases and structures, as well as internal precision equipment, against vibrational disturbances such as moonquakes and meteorite collisions. Therefore, in this study, the static and cyclic triaxial compression tests of the regolith simulant were conducted. The reference strain and equivalent damping factor of the regolith simulant were smaller compared to sandy soil on Earth. In addition, a shaking table test using model specimens was conducted on the response properties of regolith ground alone and structures set on regolith ground. The buried foundation and pile foundation notably suppressed the horizontal response attributed to the rocking component compared to a direct foundation. 展开更多
关键词 Lunar Development REGOLITH Soil-structure Interaction Triaxial Compression test Shaking Table test
下载PDF
Modal parameter identification and damping ratio estimation from the full-scale measurements of a typical Tibetan wooden structure 被引量:6
11
作者 Dai Lu Yang Na +1 位作者 S.S.Law Yang Qingshan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第4期681-695,共15页
Tibetan heritage buildings have a high historical and cultural value. They have endured adverse environmental loadings over hundreds of years without significant damage. However, there are few reports on their structu... Tibetan heritage buildings have a high historical and cultural value. They have endured adverse environmental loadings over hundreds of years without significant damage. However, there are few reports on their structural characteristics under normal environmental loadings and their behavior under dynamic loadings. In this research, a typical Tibetan wooden wall-frame building is selected to study its dynamic characteristics. Field measurements of the structure were conducted under environmental excitation to collect acceleration responses. The stochastic subspace identification (SSI) method was adopted to calculate the structural modal parameters and obtain the out-of-plane vibration characteristics of the slab and frames. The results indicated that the wall-frame structure had a lower out-of-plane stiffness and greater in-plane stiffness due to the presence of stone walls. Due to poor identified damping ratio estimates from the SSI method, a method based on the variance upper bound was proposed to complement the existing variance lower bound method for estimating the modal damping ratio to address the significant damping variability obtained from different points and measurements. The feasibility of the proposed method was illustrated with the measured data from the floor slab of the structure. The variance lower and upper bound methods both provided consistent results compared to those from the traditional SSI method. 展开更多
关键词 Tibetan wooden structure field test modal parameters damping ratio variance upper/lower bound
下载PDF
Model Test Study of Dynamic Ice Force on Compliant Conical Structures 被引量:6
12
作者 黄焱 史庆增 宋安 《China Ocean Engineering》 SCIE EI 2007年第1期11-22,共12页
To study ice-induced vibration of a compliant conical structure, a series of model tests were performed from 2004 to 2005. In the tests, the ice sheet before the compliant conical structure was found to fail in two-ti... To study ice-induced vibration of a compliant conical structure, a series of model tests were performed from 2004 to 2005. In the tests, the ice sheet before the compliant conical structure was found to fail in two-time breaking. From 2005 to 2006, this type of ice failure was studied through more groups of tests. The tests show that two-time breaking is the typical failure of ice before steep conical structures, and is controlled by other factors at the same time, such as ice speed and the angle of the cone. 展开更多
关键词 model test compliant cortical structure two-time breaking ice speed cone angle
下载PDF
Effect of Lithology and Structure on Seismic Response of Steep Slope in a Shaking Table Test 被引量:15
13
作者 LIU Han-xiang XU Qiang LI Yan-rong 《Journal of Mountain Science》 SCIE CSCD 2014年第2期371-383,共13页
Studies on landslides by the 2008 Wenchuan earthquake showed that topography was of great importance in amplifying the seismic shaking, and among other factors, lithology and slope structure controlled the spatial occ... Studies on landslides by the 2008 Wenchuan earthquake showed that topography was of great importance in amplifying the seismic shaking, and among other factors, lithology and slope structure controlled the spatial occurrence of slope failures. The present study carried out experiments on four rock slopes with steep angle of 60° by means of a shaking table. The recorded Wenchuan earthquake waves were scaled to excite the model slopes. Measurements from accelerometers installed on free surface of the model slope were analyzed, with much effort on timedomain acceleration responses to horizontal components of seismic shaking. It was found that the amplification factor of peak horizontal acceleration, RPHA, was increasing with elevation of each model slope, though the upper and lower halves of the slope exhibited different increasing patterns. As excitation intensity was increased, the drastic deterioration of the inner structure of each slope caused the sudden increase of RPHA in the upper slope part. In addition, the model simulating the soft rock slope produced the larger RPHA than the model simulating the hard rock slope by a maximum factor of 2.6. The layered model slope also produced the larger RPHA than the homogeneous model slope by a maximum factor of 2.7. The upper half of a slope was influenced more seriously by the effect of lithology, while the lower half was influenced more seriously by the effect of slope structure. 展开更多
关键词 Seismic response Shaking table test TOPOGRAPHY LITHOLOGY Slope structure
下载PDF
Model Test Study on Ice-Induced Vibrations of Compliant Multi-Cone Structures 被引量:3
14
作者 黄焱 史庆增 宋安 《China Ocean Engineering》 SCIE EI 2009年第2期317-328,共12页
For the study on the ice-induced vibration of a compliant mono-cone structure,a series of model tests were performed from 2004 to 2006.In these tests,the ice sheet before the compliant conical structure was found to b... For the study on the ice-induced vibration of a compliant mono-cone structure,a series of model tests were performed from 2004 to 2006.In these tests,the ice sheet before the compliant conical structure was found to be failed in two-time breaking.Based on this important finding,model tests study of the ice force on a compliant multi-cone structure were performed from 2006 to 2007.In these tests,the ice sheet broke before each single cone non-simultaneously.The exciting energy of the total ice force was found to be in a wide range of frequencies,and the structure can be easily excited with nonlinear resonance. 展开更多
关键词 model test dynamic ice force compliant multi-cone structure two-time breaking
下载PDF
Model Test Study on Ice Induced Vibration of A Compliant Conical Structure 被引量:3
15
作者 黄焱 史庆增 宋安 《China Ocean Engineering》 SCIE EI 2005年第3期443-456,共14页
The problem of ice induced vibration is common to ocean engineering of cold region countries. To study the ice induced vibration of a compliant conical structure, a series of model tests have been performed and some b... The problem of ice induced vibration is common to ocean engineering of cold region countries. To study the ice induced vibration of a compliant conical structure, a series of model tests have been performed and some breakthrough progresses made. The ice sheet before the compliant conical structure is found to fail by two-time breaking in the tests. The process of two-time breaking behaves in two modes, and the general control of the ice and structural conditions determine the mode in which the ice force would behave. Two dynamic ice force functions are established respectively for the two modes of two-time breaking process in this paper. The numerical simulation results are in good agreement with the measured results, indicating that the dynamic ice force functions given in this paper can fully reflect the real situation of the dynamic ice force on a compliant conical structure. 展开更多
关键词 ice induced vibration compliant conical structure model test
下载PDF
Study on soil-pile-structure-TMD interaction system by shaking table model test 被引量:3
16
作者 楼梦麟 王文剑 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2004年第1期127-137,共11页
The success of the tuned mass damper (TMD) in reducing wind-induced structural vibrations has been well established. However, from most of the recent numerical studies, it appears that for a structure situated on very... The success of the tuned mass damper (TMD) in reducing wind-induced structural vibrations has been well established. However, from most of the recent numerical studies, it appears that for a structure situated on very soft soil, soil-structure interaction (SSI) could render a damper on the structure totally ineffective. In order to experimentally verify the SSI effect on the seismic performance of TMD, a series of shaking table model tests have been conducted and the results are presented in this paper. It has been shown that the TMD is not as effective in controlling the seismic responses of structures built on soft soil sites due to the SSI effect. Some test results also show that a TMD device might have a negative impact if the SSI effect is neglected and the structure is built on a soft soil site. For structures constructed on a soil foundation, this research verifies that the SSI effect must be carefully understood before a TMD control system is designed to determine if the control is necessary and if the SSI effect must be considered when choosing the optimal parameters of the TMD device. 展开更多
关键词 soil-pile-structure interaction TMD’s performance structural control shaking table model test
下载PDF
Shaking Table Model Test of Isolated Structure on Soft Site and Analysis on Its Isolation Efficiency 被引量:3
17
作者 Yu Xu Zhuang Haiyang Zhu Chao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第2期169-176,共8页
Adopting a soft site model built on soft interlayer soil foundation,a shaking table test for soft interlayer soil-isolated structure interaction is conducted to investigate the seismic response of isolated structure o... Adopting a soft site model built on soft interlayer soil foundation,a shaking table test for soft interlayer soil-isolated structure interaction is conducted to investigate the seismic response of isolated structure on soft site,and analyze its isolation effect.Test results show that the test can reflect the earthquake response characteristics of isolated structure on soft site.It is on soft site that the dynamic characteristics of isolated structure,acceleration magnification factor(AMF)of isolated structure and isolation efficiency of the isolation layer differ from those on rigid foundation with an soil-structure interaction(SSI)effect,represented by the reduction in fundamental vibration frequency of isolated structure and the increase of damping ratio with changes of the SSI effect.SSI can either increase or decrease AMF of isolated structure on soft site,depending on the characteristics of earthquake motion input.Furthermore,the isolation efficiency of isolation layer on soft site is decreased with the SSI effect,which is related to the peak ground acceleration(PGA)and the characteristics of earthquake motion input. 展开更多
关键词 isolated structure shaking table model test soil-structure interaction(SSI) seismic response isolation efficiency
下载PDF
Stress test and analysis based on SMS fiber structure with high sensitivity
18
作者 张美芹 王冠军 +1 位作者 安永泉 王志斌 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第3期297-301,共5页
Single mode-multimode-single mode (SMS) sensor is widely used for parameters measurement, such as bending, dis-placement, temperature, strain, refractive index, etc. Generally, SMS sensor has advantages of simpl... Single mode-multimode-single mode (SMS) sensor is widely used for parameters measurement, such as bending, dis-placement, temperature, strain, refractive index, etc. Generally, SMS sensor has advantages of simple structure, low cost and easy layout, therefore it has become a research hotspot in recent years. In this paper, the multimode fiber with large core is used for manufacturing SMS structure with high sensitivity. Firstly, the multimode fiber with core/cladding diameters of 105/ 125 jitm has access to the system by means of single mode optical fiber. Secondly, SMS device structure is manufactured by welding the eccentric shaft of multimode optical fiber. Afterwards, mode interference effect and spectral response characteristics of the structure of single mode-multimode-single mode optical fiber are analyzed theoretically. Finally, with the help of a wide spectrum light source and a spectrum analyzer, the transmission spectra characteristics of SMS optical fiber with strain is tested. By observing the curve that the wave changes with stress, the sensitivity is calculated and it is consistent with theoretical value . 展开更多
关键词 SMS optical fiber structure optical spectrum analyzer (OSA) amplified spontaneous emission stress test
下载PDF
Shake table testing of a multi-tower connected hybrid structure 被引量:2
19
作者 Zhou Ying Lu Xilin +1 位作者 Lu Wensheng He Zhijun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2009年第1期47-59,共13页
Many single-tower reinforced concrete core wall-steel frame (RCC-SF) buildings have been built in China, but there are no buildings of different-height multi-tower hybrid system. A multi-tower RCC-SF tall building w... Many single-tower reinforced concrete core wall-steel frame (RCC-SF) buildings have been built in China, but there are no buildings of different-height multi-tower hybrid system. A multi-tower RCC-SF tall building was thus studied because of its structural complexity and irregularity. First, a 1/15 scaled model structure was designed and tested on the shake table under minor, moderate, and major earthquake levels. Then, the dynamic responses of the model structure were interpreted to those of the prototype structure according to the similitude theory. Experimental results demonstrate that, despite the complexity of the structure, the lateral deformation bends as the "bending type" and the RC core walls contribute more than the steel frames to resist seismic loads. The maximum inter-story drift of the complex building under minor earthquakes is slightly beyond the elastic limitation specified in the Chinese code, and meets code requirements under major earthquakes. From the test results some suggestions are provided that could contribute favorable effect on the seismic behavior and the displacement of the building. 展开更多
关键词 complex building hybrid structure scaled model shake table testing seismic performance
下载PDF
Design,fabrication,and cold test of an S-band high-gradient accelerating structure for compact proton therapy facility 被引量:4
20
作者 Yu Zhang Wen-Cheng Fang +4 位作者 Xiao-Xia Huang Jian-Hao Tan Cheng Wang Chao-Peng Wang Zhen-Tang Zhao 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第4期38-48,共11页
An S-band high-gradient accelerating structure is designed for a proton therapy linear accelerator(linac)to accommodate the new development of compact,singleroom facilities and ultra-high dose rate(FLASH)radiotherapy.... An S-band high-gradient accelerating structure is designed for a proton therapy linear accelerator(linac)to accommodate the new development of compact,singleroom facilities and ultra-high dose rate(FLASH)radiotherapy.To optimize the design,an efficient optimization scheme is applied to improve the simulation efficiency.An S-band accelerating structure with 2856 MHz is designed with a low beta of 0.38,which is a difficult structure to achieve for a linac accelerating proton particles from 70 to 250 MeV,as a high gradient up to 50 MV/m is required.A special design involving a dual-feed coupler eliminates the dipole field effect.This paper presents all the details pertaining to the design,fabrication,and cold test results of the S-band high-gradient accelerating structure. 展开更多
关键词 S-BAND High gradient Accelerating structure COMPACT Single-room facility Dual-feed coupler Cold test
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部