期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
Full-scale multi-functional test platform for investigating mechanical performance of track–subgrade systems of high-speed railways 被引量:4
1
作者 Wanming Zhai Kaiyun Wang +3 位作者 Zhaowei Chen Shengyang Zhu Chengbiao Cai Gang Liu 《Railway Engineering Science》 2020年第3期213-231,共19页
Motivated by the huge practical engineering demand for the fundamental understanding of mechanical characteristics of high-speed railway infrastructure,a fullscale multi-functional test platform for high-speed railway... Motivated by the huge practical engineering demand for the fundamental understanding of mechanical characteristics of high-speed railway infrastructure,a fullscale multi-functional test platform for high-speed railway track–subgrade system is developed in this paper,and its main functions for investigating the mechanical performance of track–subgrade systems are elaborated with three typical experimental examples.Comprising the full-scale subgrade structure and all the five types of track structures adopted in Chinese high-speed railways,namely the CRTS I,the CRTS II and the CRTS III ballastless tracks,the double-block ballastless track and the ballasted track,the test platform is established strictly according to the construction standard of Chinese high-speed railways.Three kinds of effective loading methods are employed,including the real bogie loading,multi-point loading and the impact loading.Various types of sensors are adopted in different components of the five types of track–subgrade systems to measure the displacement,acceleration,pressure,structural strain and deformation,etc.Utilizing this test platform,both dynamic characteristics and long-term performance evolution of high-speed railway track–subgrade systems can be investigated,being able to satisfy the actual demand for large-scale operation of Chinese high-speed railways.As examples,three typical experimental studies are presented to elucidate the comprehensive functionalities of the full-scale multi-functional test platform for exploring the dynamic performance and its long-term evolution of ballastless track systems and for studying the long-term accumulative settlement of the ballasted track–subgrade system in high-speed railways.Some interesting phenomena and meaningful results are captured by the developed test platform,which provide a useful guidance for the scientific operation and maintenance of high-speed railway infrastructure. 展开更多
关键词 full-scale test High-speed railway Track–subgrade system Ballastless track Ballasted track Mechanical performance Long-term performance evolution Damage and degradation
下载PDF
Resistance of full-scale beams against close-in explosions.Numerical modeling and field tests
2
作者 A.Prado A.Alañón +5 位作者 R.Castedo A.P.Santos L.M.López M.Chiquito M.Bermejo C.Oggeri 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期35-47,共13页
This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare ... This paper explores the performances of a finite element simulation including four concrete models applied to a full-scale reinforced concrete beam subjected to blast loading. Field test data has been used to compare model results for each case. The numerical modelling has been, carried out using the suitable code LS-DYNA. This code integrates blast load routine(CONWEP) for the explosive description and four different material models for the concrete including: Karagozian & Case Concrete, Winfrith, Continuous Surface Cap Model and Riedel-Hiermaier-Thoma models, with concrete meshing based on 10, 15, and 20 mm. Six full-scale beams were tested: four of them used for the initial calibration of the numerical model and two more tests at lower scaled distances. For calibration, field data obtained employing pressure and accelerometers transducers were compared with the results derived from the numerical simulation. Damage surfaces and the shape of rupture in the beams have been used as references for comparison. Influence of the meshing on accelerations has been put in evidence and for some models the shape and size of the damage in the beams produced maximum differences around 15%. In all cases, the variations between material and mesh models are shown and discussed. 展开更多
关键词 Blast test Numerical simulation LS-DYNA Concrete model Mesh effect full-scale beams
下载PDF
Behavior of transporting pipeline sections without and with hydrogen exposure based on full-scale tests
3
作者 Nóra Nagy János Lukács 《China Welding》 CAS 2024年第3期14-24,共11页
Pipeline transport of hydrogen is one of today’s economic and environmental challenges.In order to find safe and reliable application of both existing gas and build new pipelines,it is essential to carry out tests on... Pipeline transport of hydrogen is one of today’s economic and environmental challenges.In order to find safe and reliable application of both existing gas and build new pipelines,it is essential to carry out tests on full-scale pipeline section,including the potentially more dangerous places than the main pipe,the girth welds.For the investigations,pipeline sections of P355NH steel with girth welds were prepared and exposed to pure hydrogen at twice the maximum allowable operating pressure for 41 days.Subsequently,full-scale burst tests were carried out and specimens were cut and prepared from the typical locations of the failed pipeline sections for mechanical,and macro-and microstructural investigations.The results obtained were evaluated and compared with data from previous full-scale tests on pipeline sections without hydrogen exposure.The results showed differences in the behavior of pipeline sections loaded in different ways,with different characteristics of the materials and the welded joints,both in the cases without hydrogen exposure and in the cases exposed to hydrogen. 展开更多
关键词 gas transporting pipeline full-scale pipeline test complex loading condition hydrogen exposure safety factor
下载PDF
Experimental and analytical study on design performance of full-scale viscoelastic dampers 被引量:2
4
作者 Shiang-Jung Wang I-Chen Chiu +1 位作者 Chung-Han Yu Kuo-Chun Chang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第4期693-706,共14页
Viscoelastic(VE) dampers, with their stiffness and energy dissipation capabilities, have been widely used in civil engineering for mitigating wind-induced vibration and seismic responses of structures, thus enhancin... Viscoelastic(VE) dampers, with their stiffness and energy dissipation capabilities, have been widely used in civil engineering for mitigating wind-induced vibration and seismic responses of structures, thus enhancing the comfort of residents and serviceability of equipment inside. In past relevant research, most analytical models for characterizing the mechanical behavior of VE dampers were verified by comparing their predictions with performance test results from small-scale specimens, which might not adequately or conservatively represent the actual behavior of full-scale dampers, especially with regard to the ambient temperature, temperature rise, and heat convection effects. Thus, in this study, by using a high-performance testing facility with a temperature control system, full-scale VE dampers were dynamically tested with different displacement amplitudes, excitation frequencies, and ambient temperatures. By comparing the analytical predictions with the experimental results, it is demonstrated that adopting the fractional derivative method together with considering the effects of excitation frequencies, ambient temperatures, temperature rises, softening, and hardening, can reproduce the design performance of full-scale VE dampers very well. 展开更多
关键词 viscoelastic damper full-scale designperformance dynamic test fractional derivative model
下载PDF
Stiffness Degradation Modeling for Composite Wind Turbine Blades Based on Full-Scale Fatigue Testing
5
作者 Haixia Kou Kongyuan Wei +1 位作者 Yanhu Liu Xuyao Zhang 《Journal of Beijing Institute of Technology》 EI CAS 2023年第4期517-528,共12页
In order to provide more insights into the damage propagation composite wind turbine blades(blade)under cyclic fatigue loading,a stiffness degradation model for blade is proposed based on the full-scale fatigue testin... In order to provide more insights into the damage propagation composite wind turbine blades(blade)under cyclic fatigue loading,a stiffness degradation model for blade is proposed based on the full-scale fatigue testing of a blade.A novel non-linear fatigue damage accumulation model is proposed using the damage assessment theories of composite laminates for the first time.Then,a stiffness degradation model is established based on the correlation of fatigue damage and residual stiffness of the composite laminates.Finally,a stiffness degradation model for the blade is presented based on the full-scale fatigue testing.The scientific rationale of the proposed stiffness model of blade is verified by using full-scale fatigue test data of blade with a total length of 52.5 m.The results indicate that the proposed stiffness degradation model of the blade agrees well with the fatigue testing results of this blade.This work provides a basis for evaluating the fatigue damage and lifetime of blade under cyclic fatigue loading. 展开更多
关键词 composite wind turbine blades fatigue damage stiffness degradation model full-scale fatigue testing
下载PDF
Full-scale model tests and nonlinear analysis of prestressed concrete simply supported box girders
6
作者 Fang Zhi Tang Shenghua He Xin 《Engineering Sciences》 EI 2014年第1期67-76,共10页
Full-scale model tests were carried out on a 30 m span prestressed concrete box girder and a 20 m span prestressed concrete hollow slab. Failure models were prestressed reinforcement tensile failure and crashing of ro... Full-scale model tests were carried out on a 30 m span prestressed concrete box girder and a 20 m span prestressed concrete hollow slab. Failure models were prestressed reinforcement tensile failure and crashing of roof concrete, respectively. The ductility indexes of the box girder and hollow slab were 1.99 and 1.23, respectively, according to the energy viewpoint. Based on the horizontal section hypothesis, the nonlinear computation procedure was established using the limited banding law, and it could carry out the entire performance analysis including the unloading, mainly focusing on the ways to achieve the unloading curves computation through stress-strain, moment-curvature and load-displacement curves. Through the procedure, parameters that influence on the bearing capacity, deformation performance and ductility of the structures were analyzed. Those parameters were quantity of prestressed reinforcement and tension coefficients of prestressed reinforcement. From the analysis, some useful conclusions can be obtained. 展开更多
关键词 prestressed concrete box girder full-scale model test nonlinear analysis bearing capacity DUCTILITY
下载PDF
An Advanced Control Strategy for Dual-Actuator Driving System in Full-Scale Fatigue Test of Wind Turbine Blades
7
作者 Guanhua Wang Jinghua Wang +2 位作者 Xuemei Huang Leian Zhang Weisheng Liu 《Energy Engineering》 EI 2022年第4期1649-1662,共14页
A new dual-actuator fatigue loading system of wind turbine blades was designed.Compared with the traditional pendulum loading mode,the masses in this system only moved linearly along the loading direction to increase ... A new dual-actuator fatigue loading system of wind turbine blades was designed.Compared with the traditional pendulum loading mode,the masses in this system only moved linearly along the loading direction to increase the exciting force.However,the two actuators and the blade constituted a complicated non-linear energy transferring system,which led to the non-synchronization of actuators.On-site test results showed that the virtual spindle synchronous strategy commonly used in synchronous control was undesirable and caused the instability of the blade’s amplitude eventually.A cross-coupled control strategy based on the active disturbance rejection algorithm was proposed.Firstly,a control system model was built according to the synchronization error and tracking error.Furthermore,based on arranging the transition process,estimating the system state and error feedback,and compensating disturbance,an active disturbance rejection controller was designed by adopting the optimal control function.Finally,on-site test results showed that the cross-coupled control strategy based on the active disturbance rejection algorithm could ensure the synchronization of two actuators.The maximum speed synchronization error of the two motors was less than 16 RPM,the displacement synchronization error of the two actuators was less than 0.25 mm and approaching zero after 4 seconds,and the peak value of vibration of the blade was less than 5 mm,which satisfied the fatigue test requirement. 展开更多
关键词 Wind turbine blades full-scale fatigue test synchronous control cross-coupled control strategy active disturbance rejection control algorithm
下载PDF
China First Full-scale ComprehensiveDrilling Test Unit
8
《China Oil & Gas》 CAS 1997年第4期234-234,共1页
关键词 test MPA China First full-scale ComprehensiveDrilling test Unit
下载PDF
Mechanical performances of shield tunnel segments under asymmetric unloading induced by pit excavation 被引量:1
9
作者 Gang Wei Feifan Feng +2 位作者 Chengbao Hu Jiaxuan Zhu Xiao Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1547-1564,共18页
To explore the stress and deformation responses,as well as the failure characteristics of the shield tunnel segment of Hangzhou Metro under the influences of pit excavation and other surrounding projects,a self-develo... To explore the stress and deformation responses,as well as the failure characteristics of the shield tunnel segment of Hangzhou Metro under the influences of pit excavation and other surrounding projects,a self-developed“shield tunnel segment hydraulic loading system”was used to carry out full-scale loading tests on the three-ring staggered assembled segments.The structural performances and failure process of the tunnel segment under step-by-step asymmetric unloading were studied.A safety index was proposed to describe the bearing capacity of the segment.Next,a finite element model(FEM)was established to analyze the bearing capacity of segment using the test results.Finally,the effect of reinforcement with a steel plate on the deformation and bearing capacity of the segment was analyzed.The results showed that under asymmetric unloading,the peak value and amplitude of the bending moment on the near unloading side converged with a greater value than those on the far side.The concrete internal force exhibited a directional transformation at different load stages.Cracks first appeared at the 180inner arc surface of the bottom standard block and then expanded to both sides,while the rate of crack propagation of the outer arc surface was relatively lower.The bearing capacity of the segments can be evaluated by the combination of the factors,e.g.the residual bearing capacity coefficient,moment transfer coefficient,and characterization coefficient.The segments approaching failure can facilitate the increase in the residual bearing capacity coefficient by more than 50%.This can provide guidance for the service assessment of metro tunnel operations. 展开更多
关键词 Shield tunnel segment full-scale test Asymmetric unloading Stress and deformation Safety index
下载PDF
Static load test and load transfer mechanism study of squeezed branch and plate pile in collapsible loess foundation 被引量:8
10
作者 GAO Xiao-juan WANG Jin-chang ZHU Xiang-rong 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第7期1110-1117,共8页
As a special geological phenomenon, the character of collapsible loess foundation is collapsible when penetrated by water. This character leads to the soil losing load bearing capacity largely and may lead to foundati... As a special geological phenomenon, the character of collapsible loess foundation is collapsible when penetrated by water. This character leads to the soil losing load bearing capacity largely and may lead to foundation failure. Pile is a popular foundation used in collapsible loess. The squeezed branch and plate pile is a new type of pile developed in recent years and has not be used in a project before. In this paper three squeezed branch and plate piles are tested in collapsible loess after immersion processing. The results may be used for reference in similar construction project, and to provide theoretical references for de- signing of the squeezed branch and plate piles in engineering practice. 展开更多
关键词 Collapsible loess foundation Squeezed branch and plate pile Immersion processing full-scale static load test
下载PDF
High-frequency interference waves in low strain dynamic testing of X-section concrete piles 被引量:1
11
作者 Qu Liming Fan Yuming +2 位作者 Ding Xuanming Yang Changwei Zhang Yanling 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第4期877-885,共9页
Stress waves propagate along vertical,radial and circumferential directions when a non-uniformly distributed load is applied at one end of a three-dimensional shaft.As a result,the receiving signals are usually mixed ... Stress waves propagate along vertical,radial and circumferential directions when a non-uniformly distributed load is applied at one end of a three-dimensional shaft.As a result,the receiving signals are usually mixed with undesired interference components,often featuring as high-frequency fluctuations.Previous studies have revealed that sectional geometry(shape and size)greatly affects the high-frequency interference.In this study,low strain dynamic testing on full-scale X-section concrete is conducted in order to investigate the influences of high-frequency interference on velocity responses at the pile head.Emphasis is placed on the frequency and peak value of interference waves at various receiving points.Additionally,the effects of the geometrical,and mechanical properties of the pile shaft on high-frequency interference are elaborated on through the three-dimensional finite element method.The results show that the measured wave is obscured by interference waves superposed by two types of high-frequency components.The modulus and cross-sectional area are contributing factors to the frequency and peak value of the interference waves.On the other hand,the position with the least interference is determined,to some extent,by the accurate shape of the X-section. 展开更多
关键词 low strain dynamic testing X-section concrete pile high-frequency interference full-scale model test finite element method
下载PDF
Experimental and numerical investigation of the flexural performance of channel steel-bolt joint for prefabricated subway stations
12
作者 Lei WANG Shengyang ZHOU +6 位作者 Xiangsheng CHEN Xian LIU Shuya LIU Dong SU Shouchao JIANG Qikai ZHU Haoyu YAO 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第6期918-935,共18页
Flexural performance of joints is critical for prefabricated structures.This study presents a novel channel steel-bolt(CB)joint for prefabricated subway stations.Full-scale tests are carried out to investigate the fle... Flexural performance of joints is critical for prefabricated structures.This study presents a novel channel steel-bolt(CB)joint for prefabricated subway stations.Full-scale tests are carried out to investigate the flexural behavior of the CB joint under the design loads of the test-case station.In addition,a three dimensional(3D)finite element(FE)model of the CB joint is established,incorporating viscous contact to simulate the bonding and detachment behaviors of the interface between channel steel and concrete.Based on the 3D FE model,the study examines the flexural bearing mechanism and influencing factors for the flexural performance of the CB joint.The results indicate that the flexural behavior of the CB joint exhibits significant nonlinear characteristics,which can be divided into four stages.To illustrate the piecewise linearity of the bending moment-rotational angle curve,a four-stage simplified model is proposed,which is easily applicable in engineering practice.The study reveals that axial force can enhance the flexural capacity of the CB joint,while the preload of the bolt has a negligible effect.The flexural capacity of the CB joint is approximate twice the value of the designed bending moment,demonstrating that the joint is suitable for the test-case station. 展开更多
关键词 channel steel-bolt joint flexural performance full-scale test numerical simulation prefabricated subway station
原文传递
Lifetime Prediction of Wind Turbine Blade Based on Full-Scale Fatigue Testing 被引量:1
13
作者 KOU Haixia AN Zongwen +1 位作者 MA Qiang GUO Xu 《Journal of Shanghai Jiaotong university(Science)》 EI 2020年第6期755-761,共7页
In order to predict the lifetime of products appropriately with long lifetime and high reliability,the accelerated degradation testing(ADT)has been proposed.Composite wind turbine blade is one of the most important co... In order to predict the lifetime of products appropriately with long lifetime and high reliability,the accelerated degradation testing(ADT)has been proposed.Composite wind turbine blade is one of the most important components in wind turbine system.Its fatigue cycle is very long in practice.A full-scale fatigue testing is usually used to verify the design of a new blade.In general,the full-scale fatigue testing of blade is accelerated on the basis of the damage equivalent principle.During the full-scale fatigue test ing,blade is subjected to higher testing load than normal operat ing conditions;consequently,the performance degradation of the blade is hastened over time.The full-scale fatigue testing of blade is regarded as a special ADT.According to the fatigue failure criterion,we choose blade stiffness as the characteristic quantity of the blade performance,and propose an accelerated model(AM)for blade on the basis of the theories of ADT.Then,degradation path of the blade stiffness is modeled by using Gamma process.Finally,the lifet ime prediction of full-scale megawatt(MW)blade is conducted by combining the proposed AM and blade stiffness degradation model.The prediction results prove the reasonability and validity of this study.This can supply a new approach to predict the lifetime of the full-scale MW blade. 展开更多
关键词 composite wind turbine blade accelerated degradation testing(ADT) acelerated model(AM) full-scale fatigue testing blade stiffness lifet ime prediction
原文传递
Novel sensing techniques for full-scale testing of civil structures
14
作者 Kaoshan DAI Zhenhua HUANG 《Frontiers of Structural and Civil Engineering》 SCIE EI 2012年第3期240-256,共17页
Performing full-scale structural testing is an important methodology for researchers and engineers in the civil engineering industry.Full scale testing helps the researchers understand civil infrastructures'loadin... Performing full-scale structural testing is an important methodology for researchers and engineers in the civil engineering industry.Full scale testing helps the researchers understand civil infrastructures'loading scenarios,behaviors,and health conditions.It helps the engineers verify,polish,and simplify the structural design and analysis theories.To conduct a full-scale structural testing,sensors are used for data acquisitions.To help structural researchers and engineers get familiar with sensing technologies and select the most effective sensors,this study reviewed and categorized new sensing techniques for full-scale structural testing applications.The researchers of this study categorized sensors used for civil-infrastructure testing into traditional contact sensors and remote sensors based upon their application methodologies,and into cabled sensors and wireless sensors based upon their data communication strategies.The detailed descriptions of wireless sensors and remote sensing techniques and their on-site full-scale applications are presented. 展开更多
关键词 sensing technique full-scale testing wireless sensor remote sensing LIDAR laser vibrometer
原文传递
Finite element failure analysis of continuous prestressed concrete box girders 被引量:4
15
作者 张峰 李术才 +2 位作者 李树忱 叶见曙 雷笑 《Journal of Southeast University(English Edition)》 EI CAS 2009年第2期236-240,共5页
In order to analyze the load carrying capacity of prestressed concrete box girders, failure behaviors of in-situ deteriorated continuous prestressed concrete box girders under loading are experimentally observed and a... In order to analyze the load carrying capacity of prestressed concrete box girders, failure behaviors of in-situ deteriorated continuous prestressed concrete box girders under loading are experimentally observed and a finite failure analysis method for predicting behaviors of box girders is developed. A degenerated solid shell element is used to simulate box girders and material nonlinearity is considered. Since pre-stressed concrete box girders usually have a large number of curve prestressed tendons, a type of combined element is presented to simulate the prestressed tendons of box girders, and then the number of elements can be significantly reduced. The analytical results are compared with full-scale failure test results. The comparison shows that the presented method can be effectively applied to the failure analysis of in-situ continuous prestressed concrete box girders, and it also shows that the studied old bridge still has enough load carrying capacity. 展开更多
关键词 full-scale failure test prestressed concrete box girder finite element analysis combined element prestressed tendon load carrying capacity
下载PDF
特殊螺纹接头双主密封结构密封性能分析 被引量:12
16
作者 莫丽 涂炼 +1 位作者 付强 王磊 《润滑与密封》 CAS CSCD 北大核心 2018年第2期87-93,共7页
针对油气井日益苛刻的环境,基于特殊螺纹密封机制,提出一种由锥面对锥面和柱面对球面组合的双主密封螺纹接头结构。采用有限元法对比分析双主密封、锥面对锥面密封、柱面对球面密封3种主密封结构在上扣、拉伸、压缩、拉伸和内压、拉伸... 针对油气井日益苛刻的环境,基于特殊螺纹密封机制,提出一种由锥面对锥面和柱面对球面组合的双主密封螺纹接头结构。采用有限元法对比分析双主密封、锥面对锥面密封、柱面对球面密封3种主密封结构在上扣、拉伸、压缩、拉伸和内压、拉伸和内外压5种工况下,密封面接触应力、接触长度的变化情况,得到3种主密封结构的密封能力随载荷的变化规律。分析结果表明,与单主密封接头相比,该双主密封接头在不同载荷下锥面和柱面上的接触应力分布更均匀,接触长度更长且接触应力峰值更小。全尺寸试验结果表明,该双主密封接头的密封性能达到了使用要求。 展开更多
关键词 特殊螺纹 接触应力 密封结构 密封性能 全尺寸试验
下载PDF
Dynamic behavior of new cutting subgrade structure of expensive soil under train loads coupling with service environment 被引量:16
17
作者 QIU Ming-ming YANG Guo-lin +3 位作者 SHEN Quan YANG Xiao WANG Gang LIN Yu-liang 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第4期875-890,共16页
Expansive soil is sensitive to dry and wet environment change. And the volume deformation and inflation pressure of expansive soil may induce to cause the deformation failure of roadbed or many other adverse effects. ... Expansive soil is sensitive to dry and wet environment change. And the volume deformation and inflation pressure of expansive soil may induce to cause the deformation failure of roadbed or many other adverse effects. Aimed at a high-speed railway engineering practice in the newly built Yun-Gui high-speed railway expansive soil section in China, indoor vibration test on a full-scaled new cutting subgrade model is carried out. Based on the established track-subgrade-foundation of expansive soil system dynamic model test platform, dynamic behavior of new cutting subgrade structure under train loads coupling with extreme service environment(dry, raining, and groundwater level rising) is analyzed comparatively. The results show that the subgrade dynamic response is significantly influenced by service conditions and the dynamic response of subgrade gradually becomes stable with the increasing vibration times under various service environment conditions. The vertical dynamic soil stress is related with the depth in an approximate exponential function, and the curves of vertical dynamic soil stress present a "Z" shape distribution along transverse distance. The peak value of dynamic soil stress appears below the rail, and it increases more obviously near the roadbed surface. However, the peak value of dynamic soil stress is little affected outside 5.0 m of center line. The vibration velocity and acceleration are in a quadratic curve with an increase in depth, and the raining and groundwater level rising increase both the vibration velocity and the acceleration. The vertical deformations at different depths are differently affected by service environment in roadbed. The deformation of roadbed increases sharply when the water gets in the foundation of expansive soil, and more than 60% of the total deformation of roadbed occurs in expansive soil foundation. The laid waterproofing and drainage structure layer, which weakens the dynamic stress and improves the track regularity, presents a positive effect on the control deformation of roadbed surface. An improved empirical formula is then proposed to predict the dynamic stress of ballasted tracks subgrade of expansive soil. 展开更多
关键词 high-speed RAILWAY full-scale model testing dynamic response expansive SOIL service environment NEW SUBGRADE structure
下载PDF
Complete load transfer behavior of base-grouted bored piles 被引量:6
18
作者 张乾青 张忠苗 《Journal of Central South University》 SCIE EI CAS 2012年第7期2037-2046,共10页
A field study on the behavior of three destructive piles in soft soils subjected to axial load was presented.All the three piles with different diameters were base-grouted and installed with strain gauges along the pi... A field study on the behavior of three destructive piles in soft soils subjected to axial load was presented.All the three piles with different diameters were base-grouted and installed with strain gauges along the piles.The complete load transfer behavior of the base-grouted pile was analyzed using measured results.Moreover,the thresholds of the relative pile-soil displacement for fully mobilizing skin frictions in different soils were investigated,and pile tip displacements needed to fully mobilize tip resistances were analyzed.The results of the full-scale loading tests show that the skin frictions are close to the ultimate values when the pile-soil relative displacements are 1%-3% of pile diameter,and the pile tip displacements needed to fully mobilize the tip resistances are about 1.3%-2.0% of pile diameter.The load transmission curve of the soils around the pile tip corresponds to a softening model when the pile is loaded to failure. 展开更多
关键词 destructive full-scale test post-grouting technique load-displacement response axial force tip resistance skin friction
下载PDF
Full-Ring Experimental Study of the Lining Structure of Shanghai Changjiang Tunnel 被引量:12
19
作者 Liang Lu Xilin Lu Peifang Fan 《Journal of Civil Engineering and Architecture》 2011年第8期732-739,共8页
Shanghai Changjiang Tunnel, 15 m in diameter, is one of the world's largest shield-driven tunnels in diameter. Tongji University has recently carried out a test on the full-scale three-ring lining structure of Changj... Shanghai Changjiang Tunnel, 15 m in diameter, is one of the world's largest shield-driven tunnels in diameter. Tongji University has recently carried out a test on the full-scale three-ring lining structure of Changjiang Tunnel. This paper introduces the testing processes, including loading apparatuses, test contents, test cases, etc., and makes comparison with other shield lining structure tests conducted before, and finally gives some evaluations on the design of the tunnel. 展开更多
关键词 Shield-driven tunnel lining structure full-scale test load apparatus.
下载PDF
The response of collision speed caused by the large bus to new flexible barrier 被引量:7
20
作者 Lei Zhengbao Wang Rui 《Engineering Sciences》 EI 2014年第1期36-42,共7页
In order to study the response of collision speed caused by the large bus to new flexible barrier,in this paper,with the large bus as the carrier,the full-scale impact tests between flexible barrier and vehicle with t... In order to study the response of collision speed caused by the large bus to new flexible barrier,in this paper,with the large bus as the carrier,the full-scale impact tests between flexible barrier and vehicle with the impact velocities of 40 km/h and 60 km/h were carried out separately,following the procedures of the test preparation,test processing,data acquisition, etc,which were based on the test platform of the Large Structure Crash Testing Laboratory of Changsha University of Science and Technology. The important test results which contain the damage of vehicles and barrier,the moving locus of vehicle,the occupant risk index,the maximum dynamic deformation, etc,were obtained through the analysis under the different collision speeds. These provide the necessary reference basis for the further research on the structure topology optimization and improve the comprehensive constraint performance to the flexible barrier. 展开更多
关键词 full-scale impact test safety fence collision speed maximum dynamic deformation
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部