Based on the elastic theory of porous media,embedded discrete fracture model and finite volume method,and considering the micro-seepage mechanism of shale gas,a fully coupled seepage-geomechanical model suitable for f...Based on the elastic theory of porous media,embedded discrete fracture model and finite volume method,and considering the micro-seepage mechanism of shale gas,a fully coupled seepage-geomechanical model suitable for fractured shale gas reservoirs is established,the optimization method of refracturing timing is proposed,and the influencing factors of refracturing timing are analyzed based on the data from shale gas well in Fuling of Sichuan Basin.The results show that due to the depletion of formation pressure,the percentage of the maximum horizontal principal stress reversal area in the total area increases and then decreases with time.The closer the area is to the hydraulic fracture,the shorter the time for the peak of the stress reversal area percentage curve to appear,and the shorter the time for the final zero return(to the initial state).The optimum time of refracturing is affected by matrix permeability,initial stress difference and natural fracture approach angle.The larger the matrix permeability and initial stress difference is,the shorter the time for stress reversal area percentage curve to reach peak and return to the initial state,and the earlier the time to take refracturing measures.The larger the natural fracture approach angle is,the more difficult it is for stress reversal to occur near the fracture,and the earlier the optimum refracturing time is.The more likely the stress reversal occurs at the far end of the artificial fracture,the later the optimal time of refracturing is.Reservoirs with low matrix permeability have a rapid decrease in single well productivity.To ensure economic efficiency,measures such as shut-in or gas injection can be taken to restore the stress,and refracturing can be implemented in advance.展开更多
A mathematical model, fully coupling multiple porous media deformation and fluid flow, was established based on the elastic theory of porous media and fluid-solid coupling mechanism in tight oil reservoirs. The finite...A mathematical model, fully coupling multiple porous media deformation and fluid flow, was established based on the elastic theory of porous media and fluid-solid coupling mechanism in tight oil reservoirs. The finite element method was used to determine the numerical solution and the accuracy of the model was verified. On this basis, the model was used to simulate productivity of multistage fractured horizontal wells in tight oil reservoirs. The results show that during the production of tight oil wells, the reservoir region close to artificial fractures deteriorated in physical properties significantly, e.g. the aperture and conductivity of artificial fractures dropped by 52.12% and 89.02% respectively. The simulations of 3000-day production of a horizontal well in tight oil reservoir showed that the predicted productivity by the uncoupled model had an error of 38.30% from that by the fully-coupled model. Apparently, ignoring the influence of fluid-solid interaction effect led to serious deviations of the productivity prediction results. The productivity of horizontal well in tight oil reservoir was most sensitive to the start-up pressure gradient, and second most sensitive to the opening of artificial fractures. Enhancing the initial conductivity of artificial fractures was helpful to improve the productivity of tight oil wells. The influence of conductivity, spacing, number and length of artificial fractures should be considered comprehensively in fracturing design. Increasing the number of artificial fractures unilaterally could not achieve the expected increase in production.展开更多
The comparison theorems of solutions for BSDEs in fully coupled forward-backward stochastic differential equations (FBSDEs) are studied in this paper, here in the fully coupled FBSDEs the forward SDEs are the same str...The comparison theorems of solutions for BSDEs in fully coupled forward-backward stochastic differential equations (FBSDEs) are studied in this paper, here in the fully coupled FBSDEs the forward SDEs are the same structure.展开更多
Tension Leg Platform(TLP)in deepwater oil and gas field development usually consists of a hull,tendons,and top tension risers(TTRs).To maintain its top tension,each TTR is connected with a tensioner system to the hull...Tension Leg Platform(TLP)in deepwater oil and gas field development usually consists of a hull,tendons,and top tension risers(TTRs).To maintain its top tension,each TTR is connected with a tensioner system to the hull.Owing to the complicated configuration of the tensioners,the hull and TTRs form a strong coupled system.Traditionally,some simplified tensioner models are applied to analyze the TLP structures.There is a large discrepancy between their analysis results and the actual mechanism behaviors of a tensioner.It is very necessary to develop a more detailed tensioner model to consider the coupling effects between TLP and TTRs.In the present study,a fully coupled TLP hull-TTR system for hydrodynamic numerical simulation is established.A specific hydraulic pneumatic tensioner is modeled by considering 4 cylinders.The production TTR model is stacked up by specific riser joints.The simulation is also extended to analyze an array of TTRs.Different regular and irregular waves are considered.The behaviors of different cylinders are presented.The results show that it is important to consider the specific configurations of the tensioner and TTRs,which may lead to obviously different response behaviors,compared with those from a simplified model.展开更多
This paper, with a finite element method, studies the interaction of a coupled incompressible fluid-rigid structure system with a free surface subjected to external wave excitations. With this fully coupled model, the...This paper, with a finite element method, studies the interaction of a coupled incompressible fluid-rigid structure system with a free surface subjected to external wave excitations. With this fully coupled model, the rigid structure is taken as "fictitious" fluid with zero strain rate. Both fluid and structure are described by velocity and pressure. The whole domain, including fluid region and structure region, is modeled by the incompressible Navier-Stokes equations which are discretized with fixed Eulerian mesh. However, to keep the structure' s rigid body shape and behavior, a rigid body constraint is enforced on the "fictitious" fluid domain by use of the Distributed Lagrange Multipher/Fictitious Domain (DLM/ FD) method which is originally introduced to solve particulate flow problems by Glowinski et al. For the verification of the model presented herein, a 2D numerical wave tank is established to simulate small amplitude wave propagations, and then numerical results are compared with analytical solutions. Finally, a 2D example of fluid-structure interaction under wave dynamic forces provides convincing evidences for the method excellent solution quality and fidelity.展开更多
Multi-fidelity simulations incorporate computational fluid dynamics(CFD) models into a thermodynamic model,enabling the simulation of the overall performance of an entire gas turbine with high-fidelity components.Trad...Multi-fidelity simulations incorporate computational fluid dynamics(CFD) models into a thermodynamic model,enabling the simulation of the overall performance of an entire gas turbine with high-fidelity components.Traditional iterative coupled methods rely on characteristic maps,while fully coupled methods directly incorporate high-fidelity simulations.However,fully coupled methods face challenges in simulating rotating components,including weak convergence and complex implementation.To address these challenges,a fully coupled method with logarithmic transformations was developed to directly integrate high-fidelity CFD models of multiple rotating components.The developed fully coupled method was then applied to evaluate the overall performance of a KJ66 micro gas turbine across various off-design simulations.The developed fully coupled method was also compared with the traditional iterative coupled method.Furthermore,experimental data from ground tests were conducted to verify its effectiveness.The convergence history indicated that the proposed fully coupled method exhibited stable convergence,even under far-off-design simulations.The experimental verification demonstrated that the multi-fidelity simulation with the fully coupled method achieved high accuracy in off-design conditions.Further analysis revealed inherent differences in the coupling methods of CFD models between the developed fully coupled and traditional iterative coupled methods.These inherent differences provide valuable insights for reducing errors between the component-level model and CFD models in different coupling methods.The developed fully coupled method,introducing logarithmic transformations,offers more realistic support for the detailed and optimal design of high-fidelity rotating components within the overall performance platform of gas turbines.展开更多
This paper concerns a global optimality principle for fully coupled mean-field control systems.Both the first-order and the second-order variational equations are fully coupled mean-field linear FBSDEs. A new linear r...This paper concerns a global optimality principle for fully coupled mean-field control systems.Both the first-order and the second-order variational equations are fully coupled mean-field linear FBSDEs. A new linear relation is introduced, with which we successfully decouple the fully coupled first-order variational equations. We give a new second-order expansion of Y^(ε) that can work well in mean-field framework. Based on this result, the stochastic maximum principle is proved. The comparison with the stochastic maximum principle for controlled mean-field stochastic differential equations is supplied.展开更多
Caprock is a water-saturated formation with a sufficient entry capillary pressure to prevent the upward migration of a buoyant fluid. When the entry capillary pressure of caprock is smaller than the pressure exerted b...Caprock is a water-saturated formation with a sufficient entry capillary pressure to prevent the upward migration of a buoyant fluid. When the entry capillary pressure of caprock is smaller than the pressure exerted by the buoyant CO2plume, CO2gradually penetrates into the caprock. The CO2penetration depth into a caprock layer can be used to measure the caprock sealing efficiency and becomes the key issue to the assessment of caprock sealing efficiency. On the other hand, our numerical simulations on a caprock layer have revealed that a square root law for time and pore pressure exists for the CO2penetration into the caprock layer. Based on this finding, this study proposes a simple approach to estimate the CO2penetration depth into a caprock layer. This simple approach is initially developed to consider the speed of CO2invading front. It explicitly expresses the penetration depth with pressuring time, pressure difference and pressure magnitude. This simple approach is then used to fit three sets of experimental data and good fittings are observed regardless of pressures, strengths of porous media, and pore fluids(water,hydrochloric acid, and carbonic acid). Finally, theoretical analyses are conducted to explore those factors affecting CO2penetration depth. The effects of capillary pressure, gas sorption induced swelling, and fluid property are then included in this simple approach. These results show that this simple approach can predict the penetration depth into a caprock layer with sufficient accuracy, even if complicated interactions in penetration process are not explicitly expressed in this simple formula.展开更多
The underbalanced drilling has been widely used due to its advantages of high drilling efficiency and low cost etc., especially for hard formation drilling. These advantages, however, are closely related to the stress...The underbalanced drilling has been widely used due to its advantages of high drilling efficiency and low cost etc., especially for hard formation drilling. These advantages, however, are closely related to the stress state of the bottom-hole rock; therefore, it is significant to research the stress distribution of bottom-hole rock for the correct understanding of the mechanism of rock fragmentation and high penetration rate. The stress condition of bottom-hole rock is very complicated while under the co-action of overburden pressure, horizontal in-situ stresses, drilling mud pressure, pore pressure and temperature etc. In this paper, the fully coupled simulation model is established and the effects of overburden pressure, horizontal in-situ stresses, drilling mud pressure, pore pressure and temperature on stress distribution of bottom-hole rock are studied. The research shows that: in air drilling, as the well depth increases, the more easily the bottom-hole rock is broken; the mud pressure has a great effect on the bottom hole rock. The bigger the mud pressure is, the more difficult to break the bottom-hole rock; the max principle stress of the bottom-hole increased with the increasing of mud pressure, well depth and temperature difference. The bottom-hole rock can be divided into 3 regions respectively according to the stress state, 3 direction stretch zone, 2 direction compression area and 3 direction compression zone; the corresponding fragmentation degree of difficulty is easily, normally and hardly.展开更多
A fully coupled thermo-mechanical model was developed to study the temperature fields and the plastic deformations of alloy AL6061-T6 under different process parameters during the friction stir welding (FSW) process...A fully coupled thermo-mechanical model was developed to study the temperature fields and the plastic deformations of alloy AL6061-T6 under different process parameters during the friction stir welding (FSW) process. Three-dimensional results under different process parameters were presented. Results indicate that the maximum temperature is lower than the melting point of the welding material. The higher temperature gradient occurs in the leading side of the workpiece. The calculated temperature field can be fitted well with the one from the experimental test. A lower plastic strain region can be found near the welding tool in the trailing side on the bottom surface, which is formed by the specific material flow patterns in FSW. The maximum temperature can be increased with increasing the welding speed and the angular velocity in the current numerical modelling.展开更多
In this paper,we are concerned with an optimal control problem where the system is driven by a fully coupled forward-backward doubly stochastic differential equation.We study the relaxed model for which an optimal sol...In this paper,we are concerned with an optimal control problem where the system is driven by a fully coupled forward-backward doubly stochastic differential equation.We study the relaxed model for which an optimal solution exists.This is an extension of initial control problem,where admissible controls are measure valued processes.We establish necessary as well as sufficient optimality conditions to the relaxed one.展开更多
Seismic response of underground structure in liquefiable soils was analyzed by means of fully coupled dynamic finite element method.The soils were simulated by a cyclic mobility constitutive model,which is developed a...Seismic response of underground structure in liquefiable soils was analyzed by means of fully coupled dynamic finite element method.The soils were simulated by a cyclic mobility constitutive model,which is developed at the base of modified Cam-Clay model with some concepts such as stress induced anisotropy,overconsolidation and structure.It is verified that the constitutive model can perfectly described the dynamic character of both liquefiable sand and non-liquefiable clay.Special emphasis was given for the influence of thickness of liquefiable soil on the seismic response.Results showed that soils at both sides of the structure flowed toward the bottom of the underground structure with the occurrence of liquefaction,which led to the uplift of structure.The uplift of underground structure increased with the increasing of thickness of liquefiable soils.展开更多
基金Supported by National Natural Science Foundation Joint Fund Project(U21B2071)National Natural Science Foundation of China(52174033)National Natural Science Youth Foundation of China(52304041).
文摘Based on the elastic theory of porous media,embedded discrete fracture model and finite volume method,and considering the micro-seepage mechanism of shale gas,a fully coupled seepage-geomechanical model suitable for fractured shale gas reservoirs is established,the optimization method of refracturing timing is proposed,and the influencing factors of refracturing timing are analyzed based on the data from shale gas well in Fuling of Sichuan Basin.The results show that due to the depletion of formation pressure,the percentage of the maximum horizontal principal stress reversal area in the total area increases and then decreases with time.The closer the area is to the hydraulic fracture,the shorter the time for the peak of the stress reversal area percentage curve to appear,and the shorter the time for the final zero return(to the initial state).The optimum time of refracturing is affected by matrix permeability,initial stress difference and natural fracture approach angle.The larger the matrix permeability and initial stress difference is,the shorter the time for stress reversal area percentage curve to reach peak and return to the initial state,and the earlier the time to take refracturing measures.The larger the natural fracture approach angle is,the more difficult it is for stress reversal to occur near the fracture,and the earlier the optimum refracturing time is.The more likely the stress reversal occurs at the far end of the artificial fracture,the later the optimal time of refracturing is.Reservoirs with low matrix permeability have a rapid decrease in single well productivity.To ensure economic efficiency,measures such as shut-in or gas injection can be taken to restore the stress,and refracturing can be implemented in advance.
基金Supported by the National Science and Technology Major Project (2017ZX05013-005)。
文摘A mathematical model, fully coupling multiple porous media deformation and fluid flow, was established based on the elastic theory of porous media and fluid-solid coupling mechanism in tight oil reservoirs. The finite element method was used to determine the numerical solution and the accuracy of the model was verified. On this basis, the model was used to simulate productivity of multistage fractured horizontal wells in tight oil reservoirs. The results show that during the production of tight oil wells, the reservoir region close to artificial fractures deteriorated in physical properties significantly, e.g. the aperture and conductivity of artificial fractures dropped by 52.12% and 89.02% respectively. The simulations of 3000-day production of a horizontal well in tight oil reservoir showed that the predicted productivity by the uncoupled model had an error of 38.30% from that by the fully-coupled model. Apparently, ignoring the influence of fluid-solid interaction effect led to serious deviations of the productivity prediction results. The productivity of horizontal well in tight oil reservoir was most sensitive to the start-up pressure gradient, and second most sensitive to the opening of artificial fractures. Enhancing the initial conductivity of artificial fractures was helpful to improve the productivity of tight oil wells. The influence of conductivity, spacing, number and length of artificial fractures should be considered comprehensively in fracturing design. Increasing the number of artificial fractures unilaterally could not achieve the expected increase in production.
文摘The comparison theorems of solutions for BSDEs in fully coupled forward-backward stochastic differential equations (FBSDEs) are studied in this paper, here in the fully coupled FBSDEs the forward SDEs are the same structure.
基金The research was financially supported by the National Natural Science Foundation of China for Youth(Grant No.51609169)Guangxi Science and Technology Major Project(Grant No.Guike AA17292007)+2 种基金the National Key R&D Program of China(Grant No.2018YFC0310502)National Natural Science Foundation of China(Grant No.51779173)China Scholarship Council(CSC).
文摘Tension Leg Platform(TLP)in deepwater oil and gas field development usually consists of a hull,tendons,and top tension risers(TTRs).To maintain its top tension,each TTR is connected with a tensioner system to the hull.Owing to the complicated configuration of the tensioners,the hull and TTRs form a strong coupled system.Traditionally,some simplified tensioner models are applied to analyze the TLP structures.There is a large discrepancy between their analysis results and the actual mechanism behaviors of a tensioner.It is very necessary to develop a more detailed tensioner model to consider the coupling effects between TLP and TTRs.In the present study,a fully coupled TLP hull-TTR system for hydrodynamic numerical simulation is established.A specific hydraulic pneumatic tensioner is modeled by considering 4 cylinders.The production TTR model is stacked up by specific riser joints.The simulation is also extended to analyze an array of TTRs.Different regular and irregular waves are considered.The behaviors of different cylinders are presented.The results show that it is important to consider the specific configurations of the tensioner and TTRs,which may lead to obviously different response behaviors,compared with those from a simplified model.
基金This study is supported by the National Natural Science Foundation of China (Grant No50579046) the Science Foundation of Tianjin Municipal Commission of Science and Technology (Grant No043114711)
文摘This paper, with a finite element method, studies the interaction of a coupled incompressible fluid-rigid structure system with a free surface subjected to external wave excitations. With this fully coupled model, the rigid structure is taken as "fictitious" fluid with zero strain rate. Both fluid and structure are described by velocity and pressure. The whole domain, including fluid region and structure region, is modeled by the incompressible Navier-Stokes equations which are discretized with fixed Eulerian mesh. However, to keep the structure' s rigid body shape and behavior, a rigid body constraint is enforced on the "fictitious" fluid domain by use of the Distributed Lagrange Multipher/Fictitious Domain (DLM/ FD) method which is originally introduced to solve particulate flow problems by Glowinski et al. For the verification of the model presented herein, a 2D numerical wave tank is established to simulate small amplitude wave propagations, and then numerical results are compared with analytical solutions. Finally, a 2D example of fluid-structure interaction under wave dynamic forces provides convincing evidences for the method excellent solution quality and fidelity.
基金funded by the Science and Technology Innovation Committee Foundation of Shenzhen,Grant No.JCYJ20200109141403840 and Grant No.ZDSYS20220527171405012the National Natural Science Foundation of China (NSFC),Grant No.52106045。
文摘Multi-fidelity simulations incorporate computational fluid dynamics(CFD) models into a thermodynamic model,enabling the simulation of the overall performance of an entire gas turbine with high-fidelity components.Traditional iterative coupled methods rely on characteristic maps,while fully coupled methods directly incorporate high-fidelity simulations.However,fully coupled methods face challenges in simulating rotating components,including weak convergence and complex implementation.To address these challenges,a fully coupled method with logarithmic transformations was developed to directly integrate high-fidelity CFD models of multiple rotating components.The developed fully coupled method was then applied to evaluate the overall performance of a KJ66 micro gas turbine across various off-design simulations.The developed fully coupled method was also compared with the traditional iterative coupled method.Furthermore,experimental data from ground tests were conducted to verify its effectiveness.The convergence history indicated that the proposed fully coupled method exhibited stable convergence,even under far-off-design simulations.The experimental verification demonstrated that the multi-fidelity simulation with the fully coupled method achieved high accuracy in off-design conditions.Further analysis revealed inherent differences in the coupling methods of CFD models between the developed fully coupled and traditional iterative coupled methods.These inherent differences provide valuable insights for reducing errors between the component-level model and CFD models in different coupling methods.The developed fully coupled method,introducing logarithmic transformations,offers more realistic support for the detailed and optimal design of high-fidelity rotating components within the overall performance platform of gas turbines.
基金supported by the Natural Science Foundation of Shandong Province(Grant Nos.ZR2020MA032,ZR2022MA029)National Natural Science Foundation of China(Grant Nos.12171279,72171133).
文摘This paper concerns a global optimality principle for fully coupled mean-field control systems.Both the first-order and the second-order variational equations are fully coupled mean-field linear FBSDEs. A new linear relation is introduced, with which we successfully decouple the fully coupled first-order variational equations. We give a new second-order expansion of Y^(ε) that can work well in mean-field framework. Based on this result, the stochastic maximum principle is proved. The comparison with the stochastic maximum principle for controlled mean-field stochastic differential equations is supplied.
基金the financial support from the Creative Research and Development Group Program of Jiangsu Province(2014-27)the National Science Fund for Distinguished Young Scholars(Grant No.51125017)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD2014)
文摘Caprock is a water-saturated formation with a sufficient entry capillary pressure to prevent the upward migration of a buoyant fluid. When the entry capillary pressure of caprock is smaller than the pressure exerted by the buoyant CO2plume, CO2gradually penetrates into the caprock. The CO2penetration depth into a caprock layer can be used to measure the caprock sealing efficiency and becomes the key issue to the assessment of caprock sealing efficiency. On the other hand, our numerical simulations on a caprock layer have revealed that a square root law for time and pore pressure exists for the CO2penetration into the caprock layer. Based on this finding, this study proposes a simple approach to estimate the CO2penetration depth into a caprock layer. This simple approach is initially developed to consider the speed of CO2invading front. It explicitly expresses the penetration depth with pressuring time, pressure difference and pressure magnitude. This simple approach is then used to fit three sets of experimental data and good fittings are observed regardless of pressures, strengths of porous media, and pore fluids(water,hydrochloric acid, and carbonic acid). Finally, theoretical analyses are conducted to explore those factors affecting CO2penetration depth. The effects of capillary pressure, gas sorption induced swelling, and fluid property are then included in this simple approach. These results show that this simple approach can predict the penetration depth into a caprock layer with sufficient accuracy, even if complicated interactions in penetration process are not explicitly expressed in this simple formula.
基金Projects(U1562212,51525404)supported by the National Natural Science Foundation of ChinaProject(JYBFX-YQ-1)supported by the Research Project of Key Laboratory Machinery and Power Machinery(Xihua University),Ministry of Education,China
文摘The underbalanced drilling has been widely used due to its advantages of high drilling efficiency and low cost etc., especially for hard formation drilling. These advantages, however, are closely related to the stress state of the bottom-hole rock; therefore, it is significant to research the stress distribution of bottom-hole rock for the correct understanding of the mechanism of rock fragmentation and high penetration rate. The stress condition of bottom-hole rock is very complicated while under the co-action of overburden pressure, horizontal in-situ stresses, drilling mud pressure, pore pressure and temperature etc. In this paper, the fully coupled simulation model is established and the effects of overburden pressure, horizontal in-situ stresses, drilling mud pressure, pore pressure and temperature on stress distribution of bottom-hole rock are studied. The research shows that: in air drilling, as the well depth increases, the more easily the bottom-hole rock is broken; the mud pressure has a great effect on the bottom hole rock. The bigger the mud pressure is, the more difficult to break the bottom-hole rock; the max principle stress of the bottom-hole increased with the increasing of mud pressure, well depth and temperature difference. The bottom-hole rock can be divided into 3 regions respectively according to the stress state, 3 direction stretch zone, 2 direction compression area and 3 direction compression zone; the corresponding fragmentation degree of difficulty is easily, normally and hardly.
基金supported by the National Natural Science Foundation of China (Grant Nos.10421202,10802017 and 10225212)the Program for Changjiang Scholars and Innovative Research Team in University of China (PCSIRT)the National Key Basic Research Special Foundation of China (2005CB321704).
文摘A fully coupled thermo-mechanical model was developed to study the temperature fields and the plastic deformations of alloy AL6061-T6 under different process parameters during the friction stir welding (FSW) process. Three-dimensional results under different process parameters were presented. Results indicate that the maximum temperature is lower than the melting point of the welding material. The higher temperature gradient occurs in the leading side of the workpiece. The calculated temperature field can be fitted well with the one from the experimental test. A lower plastic strain region can be found near the welding tool in the trailing side on the bottom surface, which is formed by the specific material flow patterns in FSW. The maximum temperature can be increased with increasing the welding speed and the angular velocity in the current numerical modelling.
基金This work was partially supported by the Algerian PNR project N:8/u07/857.
文摘In this paper,we are concerned with an optimal control problem where the system is driven by a fully coupled forward-backward doubly stochastic differential equation.We study the relaxed model for which an optimal solution exists.This is an extension of initial control problem,where admissible controls are measure valued processes.We establish necessary as well as sufficient optimality conditions to the relaxed one.
基金the National Natural Science Foundation of China (No. 50679041)the Shanghai Leading Academic Discipline Project (No.B208)the Shang-hai Pujiang Program (No. 08PJ1406600)
文摘Seismic response of underground structure in liquefiable soils was analyzed by means of fully coupled dynamic finite element method.The soils were simulated by a cyclic mobility constitutive model,which is developed at the base of modified Cam-Clay model with some concepts such as stress induced anisotropy,overconsolidation and structure.It is verified that the constitutive model can perfectly described the dynamic character of both liquefiable sand and non-liquefiable clay.Special emphasis was given for the influence of thickness of liquefiable soil on the seismic response.Results showed that soils at both sides of the structure flowed toward the bottom of the underground structure with the occurrence of liquefaction,which led to the uplift of structure.The uplift of underground structure increased with the increasing of thickness of liquefiable soils.