The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct ...The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct virtual elements and stress servo control to approximately replace the hydraulic support problem,this paper establishes a new numerical model of hydraulic support with the same working characteristics as the actual hydraulic support by integrating numerical simulation software Rhino,Griddle and FLAC3D,which can realize the simulation of different working conditions.Based on this model,the influence mechanism of the supporting strength of hydraulic support on surrounding rock stress regulation and coal stability in front of the top coal caving face in extra thick coal seam were researched.Firstly,under different support intensity,the abutment pressure of the bearing coal and the coal in front of it presents the “three-stage”evolution characteristics.The influence range of support intensity is 15%–30%.Secondly,1.5 MPa is the upper limit of impact that the support strength can have on the front coal failure area.Thirdly,within a displacement range of 2.76 m from the coal wall,a support strength of1.5 MPa provides optimal control of the horizontal displacement of the coal.展开更多
The variation of the stress in the bolted surrounding rocks structure of the roadway driven along goaf in a fully mechanized top coal caving face with moderate stable conditions are studied by using numerical calculat...The variation of the stress in the bolted surrounding rocks structure of the roadway driven along goaf in a fully mechanized top coal caving face with moderate stable conditions are studied by using numerical calculation. The essential deformation characteristics of the surrounding rocks in this kind of roadway are obtained and the key technology of bolting support used under these conditions is put forward.展开更多
Based on the deformation characteristics of the roadways driven along goaf in fully mechanized top coal caving faces, the author considers that it is the key to ensure the stability of surrounding rocks of roadway dri...Based on the deformation characteristics of the roadways driven along goaf in fully mechanized top coal caving faces, the author considers that it is the key to ensure the stability of surrounding rocks of roadway driven along goaf to control the deformation during the period affected by mining. Considering the characteristics of the roadway layout in fully mechanized top coal caving faces, a technical scheme of destressing is put forward and the destressing effect is analyzed by using the software of Universal Distinct Element Code 3 0(UDEC 3 0).展开更多
Analyzed the support instable mode of sliding,tripping,and so on,and believed the key point of the support stability control of fully mechanized coal caving face with steep coal seams was to maintain that the seam tru...Analyzed the support instable mode of sliding,tripping,and so on,and believed the key point of the support stability control of fully mechanized coal caving face with steep coal seams was to maintain that the seam true angle was less than the hydraulic support instability critical angle.Through the layout of oblique face,the improvement of support setting load,the control of mining height and nonskid platform,the group support system of end face,the advance optimization of conveyor and support,and the other control tech- nical measures,the true angle of the seam is reduced and the instable critical angle of the support is increased,the hydraulic support stability of fully mechanized coal caving face with steep coal seams is effectively controlled.展开更多
Taking Adaohai Coal Mine as the example, underground pressure appearance laws of fully mechanized top coal slice caving on high-dipping and thick coal seams. Through site visit, theoretical analysis and discrete eleme...Taking Adaohai Coal Mine as the example, underground pressure appearance laws of fully mechanized top coal slice caving on high-dipping and thick coal seams. Through site visit, theoretical analysis and discrete element calculation, the research shows that, as the mining deepens, underground stress of lower sublevels is more obvious and higher than that of upper sublevels and is higher in the air return roadway than that in the air intake roadway in the area that is near to the top coal. Because the top coal is thick and gangue is caved above the support, underground pressure to the working face is relatively gentle. Immediate roof will mainly fall down along the floor. Main roof and the rock bed above the main roof will move to the mined out area along the fault in the early stage and then fall down with the mined out area later. In addition, roof pressure mainly periodically appears in two directions along the trend and the dip.展开更多
A mechanical model to control the top-coal deformation is established in accordance with the structural characters of the gob-side entry surrounding rock for the fully-mechanic top-coal caving; the analytical solution...A mechanical model to control the top-coal deformation is established in accordance with the structural characters of the gob-side entry surrounding rock for the fully-mechanic top-coal caving; the analytical solution of top coal roof-sag curve is deduced with Winkler elastic foundation beam model. By means of a calculating and analytic program, the top coal roof-sag values are calculated under the conditions of different supporting intensities, widths of narrow pillars and stiffness of top coal; meanwhile, the relationship between the roof-sag values and supporting intensity, width of narrow pillars and stiffness of top coal is analyzed as well. With the actual situation of the gob-side entry taken into consideration, the parameters of top-coal control are determined and a supporting plan is proposed for the top-coal control,which is proved to be reliable and effective by on-site verification. Some theoretical guidance and advice are put forward for the top-coal deformation control in gob-side entry for fully mechanized top-coal caving face.展开更多
Analyzed the rule of the Water Flowing Fractured (WFF) zone's development during the fully mechanized top coal caving.Six influence factors of WFF's height were selected,viz.mining thickness,base rock thicknes...Analyzed the rule of the Water Flowing Fractured (WFF) zone's development during the fully mechanized top coal caving.Six influence factors of WFF's height were selected,viz.mining thickness,base rock thickness,dip angle,uniaxial compressing strength of roof,mudstone proportion in overlying rock,and structure of overlying rock. The height-forecasting model of WFF was established based on the Artificial Neural Net-work techniques,and was applied in the first fully mechanized top coal caving face under sea in China.展开更多
Fully mechanized mining(FMM)technology has been applied in Chinese coal mines for more than 40 years.At present,the output of a FMM face has reached 10-million tons with Chinese-made equipment.In this study,the new de...Fully mechanized mining(FMM)technology has been applied in Chinese coal mines for more than 40 years.At present,the output of a FMM face has reached 10-million tons with Chinese-made equipment.In this study,the new developments in FMM technology and equipment in Chinese coal mines during past decades are introduced.The automatic FMM technology for thin seams,complete sets of FMM technology with ultra large shear height of 7 m for thick seams,complete sets of fully mechanized top coal caving technology with large shear height for ultra-thick seams of 20 m,complete sets of FMM technology for complex and difficult seams,including steeply inclined seams,soft coal seams with large inclination angle,and the mechanized filling mining technology and equipment are presented.Some typical case studies are also introduced.Finally,the existing problems with the FMM technology are discussed,and prospect of FMM technology and equipment applied in Chinese coal mines is put forward.展开更多
Abstract On the basis of analyzing floor strata mechanical circumstance of the roadway, the mechanical model was established. The relative displacement of roadway floor, narrow pillar floor coal mass and floor strata ...Abstract On the basis of analyzing floor strata mechanical circumstance of the roadway, the mechanical model was established. The relative displacement of roadway floor, narrow pillar floor coal mass and floor strata was calculated, the results showed that the high abutment pressure on coal mass beside the roadway was the main reason to lead to relative displacement of floor strata. And the roadway floor heave come mainly from three aspects. Firstly, the roadway floor strata is easily fractured by the stretch stress. Secondly, because the high abutment pressure is greater than the uniaxial compressive strength of floor strata, when the roadway floor strata are fractured, the coal mass floor strata at the same depth will be fractured, and broken rock will fluid into the open roadway. Thirdly, comparing with the coal mass floor, the roadway floor is relative ascending.展开更多
基金supported by Distinguished Youth Funds of National Natural Science Foundation of China (No.51925402)National Natural Science Foundation of China (Nos.51904203 and 52174125)+4 种基金the China Postdoctoral Science Foundation (No.2021M702049)the Tencent Foundation or XPLORER PRIZEShanxi Science and Technology Major Project Funds (No.20201102004)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (No.2021SX-TD001)Open Fund Research Project Supported by State Key Laboratory of Strata Intelligent Control and Green Mining Co-founded by Shandong Province and the Ministry of Science and Technology (No.SICGM202209)。
文摘The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct virtual elements and stress servo control to approximately replace the hydraulic support problem,this paper establishes a new numerical model of hydraulic support with the same working characteristics as the actual hydraulic support by integrating numerical simulation software Rhino,Griddle and FLAC3D,which can realize the simulation of different working conditions.Based on this model,the influence mechanism of the supporting strength of hydraulic support on surrounding rock stress regulation and coal stability in front of the top coal caving face in extra thick coal seam were researched.Firstly,under different support intensity,the abutment pressure of the bearing coal and the coal in front of it presents the “three-stage”evolution characteristics.The influence range of support intensity is 15%–30%.Secondly,1.5 MPa is the upper limit of impact that the support strength can have on the front coal failure area.Thirdly,within a displacement range of 2.76 m from the coal wall,a support strength of1.5 MPa provides optimal control of the horizontal displacement of the coal.
文摘The variation of the stress in the bolted surrounding rocks structure of the roadway driven along goaf in a fully mechanized top coal caving face with moderate stable conditions are studied by using numerical calculation. The essential deformation characteristics of the surrounding rocks in this kind of roadway are obtained and the key technology of bolting support used under these conditions is put forward.
文摘Based on the deformation characteristics of the roadways driven along goaf in fully mechanized top coal caving faces, the author considers that it is the key to ensure the stability of surrounding rocks of roadway driven along goaf to control the deformation during the period affected by mining. Considering the characteristics of the roadway layout in fully mechanized top coal caving faces, a technical scheme of destressing is put forward and the destressing effect is analyzed by using the software of Universal Distinct Element Code 3 0(UDEC 3 0).
基金the National Natrual Science Foundation of China(50504014)
文摘Analyzed the support instable mode of sliding,tripping,and so on,and believed the key point of the support stability control of fully mechanized coal caving face with steep coal seams was to maintain that the seam true angle was less than the hydraulic support instability critical angle.Through the layout of oblique face,the improvement of support setting load,the control of mining height and nonskid platform,the group support system of end face,the advance optimization of conveyor and support,and the other control tech- nical measures,the true angle of the seam is reduced and the instable critical angle of the support is increased,the hydraulic support stability of fully mechanized coal caving face with steep coal seams is effectively controlled.
基金Supported by the Scientific Research Business of China University of Mining & Technology (Beijing) (2009QZ04) the National Natural Science Foundation of China (50974123)
文摘Taking Adaohai Coal Mine as the example, underground pressure appearance laws of fully mechanized top coal slice caving on high-dipping and thick coal seams. Through site visit, theoretical analysis and discrete element calculation, the research shows that, as the mining deepens, underground stress of lower sublevels is more obvious and higher than that of upper sublevels and is higher in the air return roadway than that in the air intake roadway in the area that is near to the top coal. Because the top coal is thick and gangue is caved above the support, underground pressure to the working face is relatively gentle. Immediate roof will mainly fall down along the floor. Main roof and the rock bed above the main roof will move to the mined out area along the fault in the early stage and then fall down with the mined out area later. In addition, roof pressure mainly periodically appears in two directions along the trend and the dip.
基金funded by the National Natural Science Foundation of China(No.51374201,51323004)the State Key Development Program for Basic Research of China(No.2013CB227900)the College Student’s Program for Innovation of China University of Mining and Technology of China(No.201507)
文摘A mechanical model to control the top-coal deformation is established in accordance with the structural characters of the gob-side entry surrounding rock for the fully-mechanic top-coal caving; the analytical solution of top coal roof-sag curve is deduced with Winkler elastic foundation beam model. By means of a calculating and analytic program, the top coal roof-sag values are calculated under the conditions of different supporting intensities, widths of narrow pillars and stiffness of top coal; meanwhile, the relationship between the roof-sag values and supporting intensity, width of narrow pillars and stiffness of top coal is analyzed as well. With the actual situation of the gob-side entry taken into consideration, the parameters of top-coal control are determined and a supporting plan is proposed for the top-coal control,which is proved to be reliable and effective by on-site verification. Some theoretical guidance and advice are put forward for the top-coal deformation control in gob-side entry for fully mechanized top-coal caving face.
基金National Science Support Plan of China(2006BAB16B04)
文摘Analyzed the rule of the Water Flowing Fractured (WFF) zone's development during the fully mechanized top coal caving.Six influence factors of WFF's height were selected,viz.mining thickness,base rock thickness,dip angle,uniaxial compressing strength of roof,mudstone proportion in overlying rock,and structure of overlying rock. The height-forecasting model of WFF was established based on the Artificial Neural Net-work techniques,and was applied in the first fully mechanized top coal caving face under sea in China.
文摘Fully mechanized mining(FMM)technology has been applied in Chinese coal mines for more than 40 years.At present,the output of a FMM face has reached 10-million tons with Chinese-made equipment.In this study,the new developments in FMM technology and equipment in Chinese coal mines during past decades are introduced.The automatic FMM technology for thin seams,complete sets of FMM technology with ultra large shear height of 7 m for thick seams,complete sets of fully mechanized top coal caving technology with large shear height for ultra-thick seams of 20 m,complete sets of FMM technology for complex and difficult seams,including steeply inclined seams,soft coal seams with large inclination angle,and the mechanized filling mining technology and equipment are presented.Some typical case studies are also introduced.Finally,the existing problems with the FMM technology are discussed,and prospect of FMM technology and equipment applied in Chinese coal mines is put forward.
文摘Abstract On the basis of analyzing floor strata mechanical circumstance of the roadway, the mechanical model was established. The relative displacement of roadway floor, narrow pillar floor coal mass and floor strata was calculated, the results showed that the high abutment pressure on coal mass beside the roadway was the main reason to lead to relative displacement of floor strata. And the roadway floor heave come mainly from three aspects. Firstly, the roadway floor strata is easily fractured by the stretch stress. Secondly, because the high abutment pressure is greater than the uniaxial compressive strength of floor strata, when the roadway floor strata are fractured, the coal mass floor strata at the same depth will be fractured, and broken rock will fluid into the open roadway. Thirdly, comparing with the coal mass floor, the roadway floor is relative ascending.