Local soil conditions can significantly modify the seismic motion expected on the soil surface.In most cases,the indications concerning the influence of the underlying soil provided by the in-force European and Italia...Local soil conditions can significantly modify the seismic motion expected on the soil surface.In most cases,the indications concerning the influence of the underlying soil provided by the in-force European and Italian Building Codes underestimate the real seismic amplification effects.For this reason,numerical analyses of the local seismic response(LSR)have been encouraged to estimate the soil filtering effects.These analyses are generally performed in free-field conditions,ignoring the presence of superstructures and,therefore,the effects of dynamic soil-structure interaction(DSSI).Moreover,many studies on DSSI are characterised by a sophisticated modelling of the structure and an approximate modelling of the soil(using springs and dashpots at the foundation level);while others are characterised by a sophisticated modelling of the soil and an approximate modelling of the structure(considered as a simple linear elastic structure or a single degree of freedom system).This paper presents a set of finite element method(FEM)analyses on a fully-coupled soil-structure system for a reinforced concrete building located in Fleri(Catania,Italy).The building,designed for gravity loads only,was severely damaged during the 26 December 2018 earthquake.The soil was modelled considering an equivalent visco-elastic behaviour,while the structure was modelled assuming both the visco-elastic and visco-inelastic behaviours.The comparison made between the results of the FEM analyses and the observed damage is valuable.展开更多
This study presents the development of computationally efficient coupling of Navier–Stokes Computational Fluid Dynamics(CFD)with a helicopter flight dynamics model with the ultimate goal of real-time simulation of ai...This study presents the development of computationally efficient coupling of Navier–Stokes Computational Fluid Dynamics(CFD)with a helicopter flight dynamics model with the ultimate goal of real-time simulation of airwake effects in the helicopter/ship Dynamic Interface(DI).The flight dynamics model is free to move within a computational domain,where the main rotor forces are converted to source terms in the momentum equations of the CFD solution using an actuator disk model.Simultaneously,the CFD solver calculates induced velocities that are fed back to the simulation and affect the aerodynamic loads in the flight dynamics.The CFD solver models the inflow,ground effect and interactional aerodynamics in the flight dynamics simulation,and these calculations can be coupled with the solution of the external flow(e.g.,ship airwake effects).The simulation framework for fully-coupled pilot-in-the-loop(PIL)flight dynamics/CFD is demonstrated for a simplified shedding wake.Initial tests were performed with 0.38 million structured grid cells running on 352 processors and showed near-real-time performance.Improvements to the coupling interface are described that allow the simulation run at near-real-time execution speeds on currently available computing platforms.Improvements in computing hardware are expected to allow real-time simulations.展开更多
基金Financial support provided by the Dipartimento di Protezione Civile/Rete Laboratori Universitari Ingegneria Sismica e Strutturale,in Italian(DPC/ReLUIS)2019-2021 Research Project,funded by the Civil Protection Department,allowed the authors to achieve the results reported in this paper.
文摘Local soil conditions can significantly modify the seismic motion expected on the soil surface.In most cases,the indications concerning the influence of the underlying soil provided by the in-force European and Italian Building Codes underestimate the real seismic amplification effects.For this reason,numerical analyses of the local seismic response(LSR)have been encouraged to estimate the soil filtering effects.These analyses are generally performed in free-field conditions,ignoring the presence of superstructures and,therefore,the effects of dynamic soil-structure interaction(DSSI).Moreover,many studies on DSSI are characterised by a sophisticated modelling of the structure and an approximate modelling of the soil(using springs and dashpots at the foundation level);while others are characterised by a sophisticated modelling of the soil and an approximate modelling of the structure(considered as a simple linear elastic structure or a single degree of freedom system).This paper presents a set of finite element method(FEM)analyses on a fully-coupled soil-structure system for a reinforced concrete building located in Fleri(Catania,Italy).The building,designed for gravity loads only,was severely damaged during the 26 December 2018 earthquake.The soil was modelled considering an equivalent visco-elastic behaviour,while the structure was modelled assuming both the visco-elastic and visco-inelastic behaviours.The comparison made between the results of the FEM analyses and the observed damage is valuable.
基金the Office of Naval Research,ONR,under Grant/Contract numbers N00014-14-C-0020(PSU)and N00014-13-C-0456(CRAFT Tech).
文摘This study presents the development of computationally efficient coupling of Navier–Stokes Computational Fluid Dynamics(CFD)with a helicopter flight dynamics model with the ultimate goal of real-time simulation of airwake effects in the helicopter/ship Dynamic Interface(DI).The flight dynamics model is free to move within a computational domain,where the main rotor forces are converted to source terms in the momentum equations of the CFD solution using an actuator disk model.Simultaneously,the CFD solver calculates induced velocities that are fed back to the simulation and affect the aerodynamic loads in the flight dynamics.The CFD solver models the inflow,ground effect and interactional aerodynamics in the flight dynamics simulation,and these calculations can be coupled with the solution of the external flow(e.g.,ship airwake effects).The simulation framework for fully-coupled pilot-in-the-loop(PIL)flight dynamics/CFD is demonstrated for a simplified shedding wake.Initial tests were performed with 0.38 million structured grid cells running on 352 processors and showed near-real-time performance.Improvements to the coupling interface are described that allow the simulation run at near-real-time execution speeds on currently available computing platforms.Improvements in computing hardware are expected to allow real-time simulations.