A generalized form of the error function, Gp(x)=pΓ(1/p)∫0xe−tpdt, which is directly associated with the gamma function, is evaluated for arbitrary real values of p>1and 0x≤+∞by employing a fast-converging power...A generalized form of the error function, Gp(x)=pΓ(1/p)∫0xe−tpdt, which is directly associated with the gamma function, is evaluated for arbitrary real values of p>1and 0x≤+∞by employing a fast-converging power series expansion developed in resolving the so-called Grandi’s paradox. Comparisons with accurate tabulated values for well-known cases such as the error function are presented using the expansions truncated at various orders.展开更多
A new concept generalized(h,m)−preinvex function on Yang’s fractal sets is proposed.Some Ostrowski’s type inequalities with two parameters for generalized(h,m)−preinvex function are established,where three local fra...A new concept generalized(h,m)−preinvex function on Yang’s fractal sets is proposed.Some Ostrowski’s type inequalities with two parameters for generalized(h,m)−preinvex function are established,where three local fractional inequalities involving generalized midpoint type,trapezoid type and Simpson type are derived as consequences.Furthermore,as some applications,special means inequalities and numerical quadratures for local fractional integrals are discussed.展开更多
In order to take into account the computing efficiency and flexibility of calculating transcendental functions, this paper proposes one kind of reconfigurable transcendental function generator. The generator is of a r...In order to take into account the computing efficiency and flexibility of calculating transcendental functions, this paper proposes one kind of reconfigurable transcendental function generator. The generator is of a reconfigurable array structure composed of 30 processing elements (PEs). The coordinate rotational digital computer (CORDIC) algorithm is implemented on this structure. Different functions, such as sine, cosine, inverse tangent, logarithmic, etc., can be calculated based on the structure by reconfiguring the functions of PEs. The functional simulation and field programmable gate array (FPGA) verification show that the proposed method obtains great flexibility with acceptable performance.展开更多
Agilent 33200A family of function/arbitrary waveform generators are widely used in labs for creating arbitrary waveforms.Flexible applications of function/arbitrary waveform generator 33250A which is made by Agilent c...Agilent 33200A family of function/arbitrary waveform generators are widely used in labs for creating arbitrary waveforms.Flexible applications of function/arbitrary waveform generator 33250A which is made by Agilent company are expatiated.There are three methods of transferring waveform data to arbitrary waveform generator 33250A,among which,the front panel method can produce a simple interface for arbitrary waveforms and is applicable to the composition of a small amount of linear waveform segment,and the progress of this method is explained in detail.This way is convenient and can be widely used,and it will offer some good guidance in library works.展开更多
The Fourier series of the 2π-periodic functions tg(x2)and 1sin(x)and some of their relatives (first of their integrals) are investigated and illustrated with respect to their convergence. These functions are Generali...The Fourier series of the 2π-periodic functions tg(x2)and 1sin(x)and some of their relatives (first of their integrals) are investigated and illustrated with respect to their convergence. These functions are Generalized functions and the convergence is weak convergence in the sense of the convergence of continuous linear functionals defining them. The figures show that the approximations of the Fourier series possess oscillations around the function which they represent in a broad band embedding them. This is some analogue to the Gibbs phenomenon. A modification of Fourier series by expansion in powers cosn(x)for the symmetric part of functions and sin(x)cosn−1(x)for the antisymmetric part (analogous to Taylor series) is discussed and illustrated by examples. The Fourier series and their convergence behavior are illustrated also for some 2π-periodic delta-function-like sequences connected with the Poisson theorem showing non-vanishing oscillations around the singularities similar to the Gibbs phenomenon in the neighborhood of discontinuities of functions. .展开更多
Let and denote respectively the functionswhere λ≥1, The author discusses the similarity transformation of the regularizing functionals of these functions and the similar property of their Fourier transformation.
The generalized Chapman-Richards model was derived from the Chapman-Richards function in which parameters h, k and m were unconstrained. Based on the structure of solutions and biological interpretations, the model co...The generalized Chapman-Richards model was derived from the Chapman-Richards function in which parameters h, k and m were unconstrained. Based on the structure of solutions and biological interpretations, the model could be classified into eight cases (three categories) at all and among them only 4 kinds of cases are suitable in forestry that represent four typical growth patterns of trees and stands. For each of 4 equations, the model properties and biological interpretations for parameters were discussed in detail. The generalized Chapman-Richards model was capable of describing a wide range of growth curves that was asymptotic or nonasymptotic, with or without inflection point. In order to illustrate the versatility of the model, it was fitted to a group of data sets concerning the DBH growth of cryptomeria plantations with 4 initial densities and the DBH and height growth of natural Korean pine tree. Comparing the generalized Chapman-Richards function and the Schnute model, it was found that the parameters and expressions of the two models were interchangeable in theory, and the fitting results were explicitly identical in empirical applications.展开更多
The linear relationship between fractal dimensions of a type of generalized Weierstrass functions and the order of their fractional calculus has been proved. The graphs and numerical results given here further indicat...The linear relationship between fractal dimensions of a type of generalized Weierstrass functions and the order of their fractional calculus has been proved. The graphs and numerical results given here further indicate the corresponding relationship.展开更多
In the present paper, we derive some third-order differential subordination results for analytic functions in the open unit disk, using the operator Bcκf by means of normalized form of the generalized Bessel function...In the present paper, we derive some third-order differential subordination results for analytic functions in the open unit disk, using the operator Bcκf by means of normalized form of the generalized Bessel functions of the first kind, which is defined as z(Bκ+1^c f(z))′= κBκ^c f(z)-(κ- 1)Bκ+1^c f(z),where b, c, p ∈ C and κ = p +(b + 1)/2 ∈ C / Z0^-(Z0^-= {0,-1,-2, … }). The results are obtained by considering suitable classes of admissible functions. Various known or new special cases of our main results are also pointed out.展开更多
The existing studies, concerning the dressing process, focus on the major influence of the dressing conditions on the grinding response variables. However, the choice of the dressing conditions is often made, based on...The existing studies, concerning the dressing process, focus on the major influence of the dressing conditions on the grinding response variables. However, the choice of the dressing conditions is often made, based on the experience of the qualified staff or using data from reference books. The optimal dressing parameters, which are only valid for the particular methods and dressing and grinding conditions, are also used. The paper presents a methodology for optimization of the dressing parameters in cylindrical grinding. The generalized utility function has been chosen as an optimization parameter. It is a complex indicator determining the economic, dynamic and manufacturing characteristics of the grinding process. The developed methodology is implemented for the dressing of aluminium oxide grinding wheels by using experimental diamond roller dressers with different grit sizes made of medium- and high-strength synthetic diamonds type AC32 and AC80. To solve the optimization problem, a model of the generalized utility function is created which reflects the complex impact of dressing parameters. The model is built based on the results from the conducted complex study and modeling of the grinding wheel lifetime, cutting ability, production rate and cutting forces during grinding. They are closely related to the dressing conditions (dressing speed ratio, radial in-feed of the diamond roller dresser and dress-out time), the diamond roller dresser grit size/grinding wheel grit size ratio, the type of synthetic diamonds and the direction of dressing. Some dressing parameters are determined for which the generalized utility fimction has a maximum and which guarantee an optimum combination of the following: the lifetime and cutting ability of the abrasive wheels, the tangential cutting force magnitude and the production rate of the grinding process. The results obtained prove the possibility of control and optimization of grinding by selecting particular dressing parameters.展开更多
Let R0,n be the real Clifford algebra generated by e1, e2,... , en satisfying eiej+ejei=-2δij,i,j=1,2…,ne0 is the unit element.Let Ω be an open set. A function f is called left generalized analytic in ft if f sati...Let R0,n be the real Clifford algebra generated by e1, e2,... , en satisfying eiej+ejei=-2δij,i,j=1,2…,ne0 is the unit element.Let Ω be an open set. A function f is called left generalized analytic in ft if f satisfies the equation Lf=0,where ……qi 〉0, i =-, 1, - ……, n. In this article, we first give the kernel function for the generalized analytic function. Further, the Hilbert boundary value problem for generalized analytic functions in Rn+1 will be investigated.展开更多
The authors prove some monotonicity properties of functions involving the generalized Agard distortion function ηg(a,t), and obtain some inequalities for ηk(a, t) and relative distortion functions.
To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the s...To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the solution, this method can construct an approximate solution to solve the given integral equation. On the basis of the orthogonal polynomials, two useful determinant expressions of the numerator polynomial and the denominator polynomial for Padé-type approximation are explicitly given.展开更多
In this paper, we establish several inequalities for the the generalized linear distortion function λ(a, K) by using the monotonicity and convexity of certain combinations λ(a, K).
Invariant subspace method is exploited to obtain exact solutions of the two- component b-family system. It is shown that the two-component b-family system admits the generalized functional separable solutions. Further...Invariant subspace method is exploited to obtain exact solutions of the two- component b-family system. It is shown that the two-component b-family system admits the generalized functional separable solutions. Furthermore, blow up and behavior of those exact solutions are also investigated.展开更多
In this paper, the so-called approximate convexity and concavity properties of generalized Groetzsch ring function μa (r) by studying the monotonieity,convexity or concavity of certain composites of μa(r) are ob...In this paper, the so-called approximate convexity and concavity properties of generalized Groetzsch ring function μa (r) by studying the monotonieity,convexity or concavity of certain composites of μa(r) are obtained.展开更多
By virtue of the operator-Hermite-polynomial method, we derive some new generating function formulas of the product of two bivariate Hermite polynomials. Their applications in studying quantum optical states are prese...By virtue of the operator-Hermite-polynomial method, we derive some new generating function formulas of the product of two bivariate Hermite polynomials. Their applications in studying quantum optical states are presented.展开更多
We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Herm...We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Hermite polynomial method and the technique of integration within an ordered product of operators to solve these problems, which will be useful in constructing new optical field states.展开更多
By combining the operator Hermite polynomial method and the technique of integration within an ordered product of operators, for the first time we derive the generating function of even- and odd-Hermite polynomials wh...By combining the operator Hermite polynomial method and the technique of integration within an ordered product of operators, for the first time we derive the generating function of even- and odd-Hermite polynomials which will be useful in constructing new optical field states. We then show that the squeezed state and photon-added squeezed state can be expressed by even- and odd-Hermite polynomials.展开更多
文摘A generalized form of the error function, Gp(x)=pΓ(1/p)∫0xe−tpdt, which is directly associated with the gamma function, is evaluated for arbitrary real values of p>1and 0x≤+∞by employing a fast-converging power series expansion developed in resolving the so-called Grandi’s paradox. Comparisons with accurate tabulated values for well-known cases such as the error function are presented using the expansions truncated at various orders.
基金Supported by the National Natural Science Foundation of China(Grant No.11801342)the Natural Science Foundation of Shaanxi Province(Grant No.2023-JC-YB-043).
文摘A new concept generalized(h,m)−preinvex function on Yang’s fractal sets is proposed.Some Ostrowski’s type inequalities with two parameters for generalized(h,m)−preinvex function are established,where three local fractional inequalities involving generalized midpoint type,trapezoid type and Simpson type are derived as consequences.Furthermore,as some applications,special means inequalities and numerical quadratures for local fractional integrals are discussed.
基金supported by the National Natural Science Foundation of China(61272120,61602377,61634004)the Natural Science Foundation of Shaanxi Province of China(2015JM6326)+1 种基金Shaanxi Provincial Co-ordination Innovation Project of Science and Technology(2016KTZDGY02-04-02)the Project of Education Department of Shaanxi Provincial Government(15JK1683)
文摘In order to take into account the computing efficiency and flexibility of calculating transcendental functions, this paper proposes one kind of reconfigurable transcendental function generator. The generator is of a reconfigurable array structure composed of 30 processing elements (PEs). The coordinate rotational digital computer (CORDIC) algorithm is implemented on this structure. Different functions, such as sine, cosine, inverse tangent, logarithmic, etc., can be calculated based on the structure by reconfiguring the functions of PEs. The functional simulation and field programmable gate array (FPGA) verification show that the proposed method obtains great flexibility with acceptable performance.
文摘Agilent 33200A family of function/arbitrary waveform generators are widely used in labs for creating arbitrary waveforms.Flexible applications of function/arbitrary waveform generator 33250A which is made by Agilent company are expatiated.There are three methods of transferring waveform data to arbitrary waveform generator 33250A,among which,the front panel method can produce a simple interface for arbitrary waveforms and is applicable to the composition of a small amount of linear waveform segment,and the progress of this method is explained in detail.This way is convenient and can be widely used,and it will offer some good guidance in library works.
文摘The Fourier series of the 2π-periodic functions tg(x2)and 1sin(x)and some of their relatives (first of their integrals) are investigated and illustrated with respect to their convergence. These functions are Generalized functions and the convergence is weak convergence in the sense of the convergence of continuous linear functionals defining them. The figures show that the approximations of the Fourier series possess oscillations around the function which they represent in a broad band embedding them. This is some analogue to the Gibbs phenomenon. A modification of Fourier series by expansion in powers cosn(x)for the symmetric part of functions and sin(x)cosn−1(x)for the antisymmetric part (analogous to Taylor series) is discussed and illustrated by examples. The Fourier series and their convergence behavior are illustrated also for some 2π-periodic delta-function-like sequences connected with the Poisson theorem showing non-vanishing oscillations around the singularities similar to the Gibbs phenomenon in the neighborhood of discontinuities of functions. .
文摘Let and denote respectively the functionswhere λ≥1, The author discusses the similarity transformation of the regularizing functionals of these functions and the similar property of their Fourier transformation.
基金This research was supported by Excellent Youth Teacher Project of Ministry of Education.
文摘The generalized Chapman-Richards model was derived from the Chapman-Richards function in which parameters h, k and m were unconstrained. Based on the structure of solutions and biological interpretations, the model could be classified into eight cases (three categories) at all and among them only 4 kinds of cases are suitable in forestry that represent four typical growth patterns of trees and stands. For each of 4 equations, the model properties and biological interpretations for parameters were discussed in detail. The generalized Chapman-Richards model was capable of describing a wide range of growth curves that was asymptotic or nonasymptotic, with or without inflection point. In order to illustrate the versatility of the model, it was fitted to a group of data sets concerning the DBH growth of cryptomeria plantations with 4 initial densities and the DBH and height growth of natural Korean pine tree. Comparing the generalized Chapman-Richards function and the Schnute model, it was found that the parameters and expressions of the two models were interchangeable in theory, and the fitting results were explicitly identical in empirical applications.
文摘The linear relationship between fractal dimensions of a type of generalized Weierstrass functions and the order of their fractional calculus has been proved. The graphs and numerical results given here further indicate the corresponding relationship.
基金partly supported by the Natural Science Foundation of China(11271045)the Higher School Doctoral Foundation of China(20100003110004)+2 种基金the Natural Science Foundation of Inner Mongolia of China(2010MS0117)athe Higher School Foundation of Inner Mongolia of China(NJZY13298)the Commission for the Scientific Research Projects of Kafkas Univertsity(2012-FEF-30)
文摘In the present paper, we derive some third-order differential subordination results for analytic functions in the open unit disk, using the operator Bcκf by means of normalized form of the generalized Bessel functions of the first kind, which is defined as z(Bκ+1^c f(z))′= κBκ^c f(z)-(κ- 1)Bκ+1^c f(z),where b, c, p ∈ C and κ = p +(b + 1)/2 ∈ C / Z0^-(Z0^-= {0,-1,-2, … }). The results are obtained by considering suitable classes of admissible functions. Various known or new special cases of our main results are also pointed out.
文摘The existing studies, concerning the dressing process, focus on the major influence of the dressing conditions on the grinding response variables. However, the choice of the dressing conditions is often made, based on the experience of the qualified staff or using data from reference books. The optimal dressing parameters, which are only valid for the particular methods and dressing and grinding conditions, are also used. The paper presents a methodology for optimization of the dressing parameters in cylindrical grinding. The generalized utility function has been chosen as an optimization parameter. It is a complex indicator determining the economic, dynamic and manufacturing characteristics of the grinding process. The developed methodology is implemented for the dressing of aluminium oxide grinding wheels by using experimental diamond roller dressers with different grit sizes made of medium- and high-strength synthetic diamonds type AC32 and AC80. To solve the optimization problem, a model of the generalized utility function is created which reflects the complex impact of dressing parameters. The model is built based on the results from the conducted complex study and modeling of the grinding wheel lifetime, cutting ability, production rate and cutting forces during grinding. They are closely related to the dressing conditions (dressing speed ratio, radial in-feed of the diamond roller dresser and dress-out time), the diamond roller dresser grit size/grinding wheel grit size ratio, the type of synthetic diamonds and the direction of dressing. Some dressing parameters are determined for which the generalized utility fimction has a maximum and which guarantee an optimum combination of the following: the lifetime and cutting ability of the abrasive wheels, the tangential cutting force magnitude and the production rate of the grinding process. The results obtained prove the possibility of control and optimization of grinding by selecting particular dressing parameters.
基金supported by NNSF of China (11171260)RFDP of Higher Education of China (20100141110054)Scientific Research Fund of Leshan Normal University (Z1265)
文摘Let R0,n be the real Clifford algebra generated by e1, e2,... , en satisfying eiej+ejei=-2δij,i,j=1,2…,ne0 is the unit element.Let Ω be an open set. A function f is called left generalized analytic in ft if f satisfies the equation Lf=0,where ……qi 〉0, i =-, 1, - ……, n. In this article, we first give the kernel function for the generalized analytic function. Further, the Hilbert boundary value problem for generalized analytic functions in Rn+1 will be investigated.
基金supported by the Natural Science Foundation of China(11071069 and 11171307)the Natural Science Foundation of the Department of Education of Zhejiang Province(Y201328799)
文摘The authors prove some monotonicity properties of functions involving the generalized Agard distortion function ηg(a,t), and obtain some inequalities for ηk(a, t) and relative distortion functions.
基金Project supported by the National Natural Science Foundation of China (No. 10271074)
文摘To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the solution, this method can construct an approximate solution to solve the given integral equation. On the basis of the orthogonal polynomials, two useful determinant expressions of the numerator polynomial and the denominator polynomial for Padé-type approximation are explicitly given.
基金Supported by the National Natural Science Foundation of China(11071069, 11171307)the Natural Science Foundation of Hunan Province(09JJ6003)
文摘In this paper, we establish several inequalities for the the generalized linear distortion function λ(a, K) by using the monotonicity and convexity of certain combinations λ(a, K).
基金supported by NSFC(11471260)the Foundation of Shannxi Education Committee(12JK0850)
文摘Invariant subspace method is exploited to obtain exact solutions of the two- component b-family system. It is shown that the two-component b-family system admits the generalized functional separable solutions. Furthermore, blow up and behavior of those exact solutions are also investigated.
文摘In this paper, the so-called approximate convexity and concavity properties of generalized Groetzsch ring function μa (r) by studying the monotonieity,convexity or concavity of certain composites of μa(r) are obtained.
基金supported by the National Natural Science Foundation of China(Grant No.11175113)the Fundamental Research Funds for the Central Universities of China(Grant No.WK2060140013)the Natural Science Foundation of Jiangsu Higher Education Institution of China(Grant No.14KJD140001)
文摘By virtue of the operator-Hermite-polynomial method, we derive some new generating function formulas of the product of two bivariate Hermite polynomials. Their applications in studying quantum optical states are presented.
基金Project supported by the National Natural Science Foundation of China(Grnat No.11175113)the Fundamental Research Funds for the Central Universities of China(Grant No.WK2060140013)
文摘We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Hermite polynomial method and the technique of integration within an ordered product of operators to solve these problems, which will be useful in constructing new optical field states.
基金supported by the National Natural Science Foundation of China(Grant No.11175113)the Fundamental Research Funds for the Central Universities of China(Grant No.WK2060140013)
文摘By combining the operator Hermite polynomial method and the technique of integration within an ordered product of operators, for the first time we derive the generating function of even- and odd-Hermite polynomials which will be useful in constructing new optical field states. We then show that the squeezed state and photon-added squeezed state can be expressed by even- and odd-Hermite polynomials.