期刊文献+
共找到742,740篇文章
< 1 2 250 >
每页显示 20 50 100
Emerging insights into the function of very long chain fatty acids at cerebellar synapses
1
作者 Martin-Paul Agbaga Mohiuddin Ahmad 《Neural Regeneration Research》 SCIE CAS 2025年第6期1709-1710,共2页
Very long chain-saturated and-polyunsaturated fatty acids(VLC-SFA and VLC-PUFA, respectively) are a functionally important class of fatty acids containing 28 carbons or more in their acyl chain. They are synthesized b... Very long chain-saturated and-polyunsaturated fatty acids(VLC-SFA and VLC-PUFA, respectively) are a functionally important class of fatty acids containing 28 carbons or more in their acyl chain. They are synthesized by the elongation of very long fatty acids-4(ELOVL4) enzyme, expressed mainly in the brain, retina, skin, testes, and meibomian gland, where these fatty acids are found(Agbaga et al., 2008). Further, these organs exhibit tissuespecific VLC-PUFA and VLC-SFA biosynthesis and incorporation into complex lipids for specific functions. In the brain, skin, and Meibomian glands, the ELOVL4 mainly makes VLC-SFA, which are incorporated into complex sphingolipids. In the retina, the ELOVL4 makes VLC-PUFA that are incorporated into phosphatidylcholine, that are critical for visual function, while in testes and sperm, the VLC-PUFA are incorporated into sphingolipids that are critical for fertility(Yeboah et al., 2021). 展开更多
关键词 functionS function INSIGHT
下载PDF
The complex role of protocadherin-19 in brain function:a focus on the oxytocin system
2
作者 Sara Mazzoleni Marta Busnelli Silvia Bassani 《Neural Regeneration Research》 SCIE CAS 2025年第11期3211-3212,共2页
Mutations in the protocadherin-19(PCDH19)gene(Xq22.1)cause the X-linked syndrome known as developmental and epileptic encephalopathy 9(DEE9,OMIM#300088)(Dibbens et al.,2008).DEE9 is characterized by early-onset cluste... Mutations in the protocadherin-19(PCDH19)gene(Xq22.1)cause the X-linked syndrome known as developmental and epileptic encephalopathy 9(DEE9,OMIM#300088)(Dibbens et al.,2008).DEE9 is characterized by early-onset clustering epilepsy associated with intellectual disability ranging from mild to profound,autism spectrum disorder,and other neuropsychiatric features including schizophrenia,anxiety,attentiondeficit/hyperactivity,and obsessive or aggressive behaviors.While seizures may become less frequent in adolescence,psychiatric comorbidities persist and often worsen with age(Dibbens et al.,2008;Kolc et al.,2020). 展开更多
关键词 EPILEPSY function SYSTEM
下载PDF
Chondroitinase ABC combined with Schwann cell transplantation enhances restoration of neural connection and functional recovery following acute and chronic spinal cord injury
3
作者 Wenrui Qu Xiangbing Wu +13 位作者 Wei Wu Ying Wang Yan Sun Lingxiao Deng Melissa Walker Chen Chen Heqiao Dai Qi Han Ying Ding Yongzhi Xia George Smith Rui Li Nai-Kui Liu Xiao-Ming Xu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1467-1482,共16页
Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties.A the Food and Drug Administration... Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties.A the Food and Drug Administration-approved Phase I clinical trial has been conducted to evaluate the safety of transplanted human autologous Schwann cells to treat patients with spinal cord injury.A major challenge for Schwann cell transplantation is that grafted Schwann cells are confined within the lesion cavity,and they do not migrate into the host environment due to the inhibitory barrier formed by injury-induced glial scar,thus limiting axonal reentry into the host spinal cord.Here we introduce a combinatorial strategy by suppressing the inhibitory extracellular environment with injection of lentivirus-mediated transfection of chondroitinase ABC gene at the rostral and caudal borders of the lesion site and simultaneously leveraging the repair capacity of transplanted Schwann cells in adult rats following a mid-thoracic contusive spinal cord injury.We report that when the glial scar was degraded by chondroitinase ABC at the rostral and caudal lesion borders,Schwann cells migrated for considerable distances in both rostral and caudal directions.Such Schwann cell migration led to enhanced axonal regrowth,including the serotonergic and dopaminergic axons originating from supraspinal regions,and promoted recovery of locomotor and urinary bladder functions.Importantly,the Schwann cell survival and axonal regrowth persisted up to 6 months after the injury,even when treatment was delayed for 3 months to mimic chronic spinal cord injury.These findings collectively show promising evidence for a combinatorial strategy with chondroitinase ABC and Schwann cells in promoting remodeling and recovery of function following spinal cord injury. 展开更多
关键词 axonal regrowth bladder function chondroitinase ABC functional recovery glial scar LENTIVIRUS migration Schwann cell spinal cord injury TRANSPLANTATION
下载PDF
Emerging role of A-kinase anchoring protein 5 signaling in reward circuit function
4
作者 William J.Flerlage Mark L.Dell’Acqua +1 位作者 Brian M.Cox Fereshteh S.Nugent 《Neural Regeneration Research》 SCIE CAS 2025年第10期2913-2914,共2页
There is a strong evidence supporting the hypothesis of synaptic dysfunction as a major contributor to neural circuit and network disruption underlying emotional and mood dysregulation in psychiatric disorders(Simmons... There is a strong evidence supporting the hypothesis of synaptic dysfunction as a major contributor to neural circuit and network disruption underlying emotional and mood dysregulation in psychiatric disorders(Simmons et al.,2024).Diverse sets of distinct molecular signaling pathways converge on the synapse to regulate synaptogenesis,synaptic function,and synaptic plasticity in brain regions and circuits through complex interactions organized by numerous multivalent protein scaffolds,including the family of proteins known as A-kinase anchoring proteins(AKAPs). 展开更多
关键词 function SUPPORTING
下载PDF
Effects of the extrusion parameters on microstructure,texture and room temperature mechanical properties of extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy
5
作者 Chenjin Zhang Guangyu Yang +4 位作者 Lei Xiao Zhiyong Kan Jing Guo Qiang Li Wanqi Jie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期136-146,共11页
Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusi... Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy. 展开更多
关键词 Mg-rare earth alloys extrusion temperature extrusion ratio extrusion speed strengthening mechanisms
下载PDF
An Efficient Boron Source Activation Strategy for the Low‑Temperature Synthesis of Boron Nitride Nanotubes
6
作者 Ying Wang Kai Zhang +10 位作者 Liping Ding Liyun Wu Songfeng E Qian He Nanyang Wang Hui Zuo Zhengyang Zhou Feng Ding Yue Hu Jin Zhang Yagang Yao 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期548-558,共11页
Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid ... Lowering the synthesis temperature of boron nitride nanotubes(BNNTs)is crucial for their development.The primary reason for adopting a high temperature is to enable the effective activation of highmelting-point solid boron.In this study,we developed a novel approach for efficiently activating boron by introducing alkali metal compounds into the conventional MgO–B system.This approach can be adopted to form various low-melting-point AM–Mg–B–O growth systems.These growth systems have improved catalytic capability and reactivity even under low-temperature conditions,facilitating the synthesis of BNNTs at temperatures as low as 850℃.In addition,molecular dynamics simulations based on density functional theory theoretically demonstrate that the systems maintain a liquid state at low temperatures and interact with N atoms to form BN chains.These findings offer novel insights into the design of boron activation and are expected to facilitate research on the low-temperature synthesis of BNNTs. 展开更多
关键词 Boron nitride nanotubes LOW-temperature Boron activation Density functional theory
下载PDF
Ideal Bi‑Based Hybrid Anode Material for Ultrafast Charging of Sodium‑Ion Batteries at Extremely Low Temperatures
7
作者 Jie Bai Jian Hui Jia +2 位作者 Yu Wang Chun Cheng Yang Qing Jiang 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期152-167,共16页
Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability o... Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability of ultrafast charging at ultralow temperature for SIBs is rarely reported.Herein,a hybrid of Bi nanoparticles embedded in carbon nanorods is demonstrated as an ideal material to address this issue,which is synthesized via a high temperature shock method.Such a hybrid shows an unprecedented rate performance(237.9 mAh g^(−1)at 2 A g^(−1))at−60℃,outperforming all reported SIB anode materials.Coupled with a Na_(3)V_(2)(PO_(4))_(3)cathode,the energy density of the full cell can reach to 181.9 Wh kg^(−1)at−40°C.Based on this work,a novel strategy of high-rate activation is proposed to enhance performances of Bi-based materials in cryogenic conditions by creating new active sites for interfacial reaction under large current. 展开更多
关键词 Bi nanoparticles High temperature shock High-rate activation Ultrafast charging Low-temperature sodium-ion batteries
下载PDF
3D Printing of Tough Hydrogel Scaffolds with Functional Surface Structures for Tissue Regeneration
8
作者 Ke Yao Gaoying Hong +11 位作者 Ximin Yuan Weicheng Kong Pengcheng Xia Yuanrong Li Yuewei Chen Nian Liu Jing He Jue Shi Zihe Hu Yanyan Zhou Zhijian Xie Yong He 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期18-45,共28页
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi... Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries. 展开更多
关键词 3D printing Tough hydrogel scaffold functional surface structure Tissue regeneration BIOMATERIALS
下载PDF
Near-infrared brain functional characteristics of mild cognitive impairment with sleep disorders
9
作者 Heng Liao Sha Liao +5 位作者 Yu-Jiao Gao Xi Wang Li-Hong Guo Su Zheng Wu Yang Yi-Nan Dai 《World Journal of Psychiatry》 SCIE 2025年第1期106-116,共11页
BACKGROUND Mild cognitive impairment(MCI)has a high risk of progression to Alzheimer’s disease.The disease is often accompanied by sleep disorders,and whether sleep disorders have an effect on brain function in patie... BACKGROUND Mild cognitive impairment(MCI)has a high risk of progression to Alzheimer’s disease.The disease is often accompanied by sleep disorders,and whether sleep disorders have an effect on brain function in patients with MCI is unclear.AIM To explore the near-infrared brain function characteristics of MCI with sleep disorders.METHODS A total of 120 patients with MCI(MCI group)and 50 healthy subjects(control group)were selected.All subjects underwent the functional near-infrared spec-troscopy test.Collect baseline data,Mini-Mental State Examination,Montreal Cognitive Assessment scale,fatigue severity scale(FSS)score,sleep parameter,and oxyhemoglobin(Oxy-Hb)concentration and peak time of functional near-infrared spectroscopy test during the task period.The relationship between Oxy-RESULTS Compared with the control group,the FSS score of the MCI group was higher(t=11.310),and the scores of Pittsburgh sleep quality index,sleep time,sleep efficiency,nocturnal sleep disturbance,and daytime dysfunction were higher(Z=-10.518,-10.368,-9.035,-10.661,-10.088).Subjective sleep quality and total sleep time scores were lower(Z=-11.592,-9.924).The sleep efficiency of the MCI group was lower,and the awakening frequency,rem sleep latency period,total sleep time,and oxygen desaturation index were higher(t=5.969,5.829,2.887,3.003,5.937).The Oxy-Hb concentration at T0,T1,and T2 in the MCI group was lower(t=14.940,11.280,5.721),and the peak time was higher(t=18.800,13.350,9.827).In MCI patients,the concentration of Oxy-Hb during T0 was negatively correlated with the scores of Pittsburgh sleep quality index,sleep time,total sleep time,and sleep efficiency(r=-0.611,-0.388,-0.563,-0.356).It was positively correlated with sleep efficiency and total sleep time(r=0.754,0.650),and negatively correlated with oxygen desaturation index(r=-0.561)and FSS score(r=-0.526).All comparisons were P<0.05.CONCLUSION Patients with MCI and sleep disorders have lower near-infrared brain function than normal people,which is related to sleep quality.Clinically,a comprehensive assessment of the near-infrared brain function of patients should be carried out to guide targeted treatment and improve curative effect. 展开更多
关键词 MILD Cognitive impairment Sleep disorders NEAR-INFRARED Brain functional CHARACTERISTICS
下载PDF
Pharmacological targeting cGAS/STING/NF-κB axis by tryptanthrin induces microglia polarization toward M2 phenotype and promotes functional recovery in a mouse model of spinal cord injury
10
作者 Ziwei Fan Mengxian Jia +16 位作者 Jian Zhou Zhoule Zhu Yumin Wu Xiaowu Lin Yiming Qian Jiashu Lian Xin Hua Jianhong Dong Zheyu Fang Yuqing Liu Sibing Chen Xiumin Xue Juanqing Yue Minyu Zhu Ying Wang Zhihui Huang Honglin Teng 《Neural Regeneration Research》 SCIE CAS 2025年第11期3287-3301,共15页
The M1/M2 phenotypic shift of microglia after spinal cord injury plays an important role in the regulation of neuroinflammation during the secondary injury phase of spinal cord injury.Regulation of shifting microglia ... The M1/M2 phenotypic shift of microglia after spinal cord injury plays an important role in the regulation of neuroinflammation during the secondary injury phase of spinal cord injury.Regulation of shifting microglia polarization from M1(neurotoxic and proinflammatory type)to M2(neuroprotective and anti-inflammatory type)after spinal cord injury appears to be crucial.Tryptanthrin possesses an anti-inflammatory biological function.However,its roles and the underlying molecular mechanisms in spinal cord injury remain unknown.In this study,we found that tryptanthrin inhibited microglia-derived inflammation by promoting polarization to the M2 phenotype in vitro.Tryptanthrin promoted M2 polarization through inactivating the cGAS/STING/NF-κB pathway.Additionally,we found that targeting the cGAS/STING/NF-κB pathway with tryptanthrin shifted microglia from the M1 to M2 phenotype after spinal cord injury,inhibited neuronal loss,and promoted tissue repair and functional recovery in a mouse model of spinal cord injury.Finally,using a conditional co-culture system,we found that microglia treated with tryptanthrin suppressed endoplasmic reticulum stress-related neuronal apoptosis.Taken together,these results suggest that by targeting the cGAS/STING/NF-κB axis,tryptanthrin attenuates microglia-derived neuroinflammation and promotes functional recovery after spinal cord injury through shifting microglia polarization to the M2 phenotype. 展开更多
关键词 cGAS/STING functional recovery MICROGLIA neuroinflammation neuroprotection nuclear factor-κB POLARIZATION spinal cord injury TRYPTANTHRIN
下载PDF
Enhancement of motor functional recovery in thoracic spinal cord injury: voluntary wheel running versus forced treadmill exercise
11
作者 Do-Hun Lee Dan Cao +4 位作者 Younghye Moon Chen Chen Nai-Kui Liu Xiao-Ming Xu Wei Wu 《Neural Regeneration Research》 SCIE CAS 2025年第3期836-844,共9页
Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery ... Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery and morphological changes following thoracic contusive spinal cord injury. After a 7-day recovery period after spinal cord injury, mice were assigned to either a trained group(10 weeks of voluntary running wheel or forced treadmill exercise) or an untrained group. Bi-weekly assessments revealed that the exercise-trained group, particularly the voluntary wheel exercise subgroup, displayed significantly improved locomotor recovery, more plasticity of dopaminergic and serotonin modulation compared with the untrained group. Additionally, exercise interventions led to gait pattern restoration and enhanced transcranial magnetic motor-evoked potentials. Despite consistent injury areas across groups, exercise training promoted terminal innervation of descending axons. In summary, voluntary wheel exercise shows promise for enhancing outcomes after thoracic contusive spinal cord injury, emphasizing the role of exercise modality in promoting recovery and morphological changes in spinal cord injuries. Our findings will influence future strategies for rehabilitation exercises, restoring functional movement after spinal cord injury. 展开更多
关键词 behavioral assessment motor function neural plasticity running wheel exercise spinal cord injury treadmill exercise voluntary exercise
下载PDF
Room Temperature Synthesis of Vertically Aligned Amorphous Ultrathin NiCo-LDH Nanosheets Bifunctional Flexible Supercapacitor Electrodes 被引量:1
12
作者 Kwadwo Asare Owusu Zhaoyang Wang +7 位作者 Ali Saad Felix Ofori Boakye Muhammad Asim Mushtaq Muhammad Tahir Ghulam Yasin Dongqing Liu Zhengchun Peng Xingke Cai 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期277-286,共10页
Developing a simple scalable method to fabricate electrodes with high capacity and wide voltage range is desired for the real use of electrochemical supercapacitors.Herein,we synthesized amorphous NiCo-LDH nanosheets ... Developing a simple scalable method to fabricate electrodes with high capacity and wide voltage range is desired for the real use of electrochemical supercapacitors.Herein,we synthesized amorphous NiCo-LDH nanosheets vertically aligned on activated carbon cloth substrate,which was in situ transformed from Co-metal-organic framework materials nano-columns by a simple ion exchange process at room temperature.Due to the amorphous and vertically aligned ultrathin structure of NiCo-LDH,the NiCo-LDH/activated carbon cloth composites present high areal capacities of 3770 and 1480 mF cm^(-2)as cathode and anode at 2 mA cm^(-2),and 79.5%and 80%capacity have been preserved at 50 mA cm^(-2).In the meantime,they all showed excellent cycling performance with negligible change after>10000 cycles.By fabricating them into an asymmetric supercapacitor,the device achieves high energy densities(5.61 mWh cm^(-2)and 0.352 mW cm^(-3)).This work provides an innovative strategy for simplifying the design of supercapacitors as well as providing a new understanding of improving the rate capabilities/cycling stability of NiCo-LDH materials. 展开更多
关键词 amorphous nanosheets aqueous supercapacitor high volumetric/areal energy density NiCo-LDH room temperature synthesis
下载PDF
Activation of adult endogenous neurogenesis by a hyaluronic acid collagen gel containing basic fibroblast growth factor promotes remodeling and functional recovery of the injured cerebral cortex
13
作者 Yan Li Peng Hao +6 位作者 Hongmei Duan Fei Hao Wen Zhao Yudan Gao Zhaoyang Yang Kwok-Fai So Xiaoguang Li 《Neural Regeneration Research》 SCIE CAS 2025年第10期2923-2937,共15页
The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate ne... The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate neurogenesis and reconstruct cortical layers II to VI in non-neurogenic regions,such as the cortex,remains unknown.In this study,we implanted a hyaluronic acid collagen gel loaded with basic fibroblast growth factor into the motor cortex immediately following traumatic injury.Our findings reveal that this gel effectively stimulated the proliferation and migration of endogenous neural stem/progenitor cells,as well as their differentiation into mature and functionally integrated neurons.Importantly,these new neurons reconstructed the architecture of cortical layers II to VI,integrated into the existing neural circuitry,and ultimately led to improved brain function.These findings offer novel insight into potential clinical treatments for traumatic cerebral cortex injuries. 展开更多
关键词 adult endogenous neurogenesis basic fibroblast growth factor-hyaluronic acid collagen gel cortical remodeling functional recovery migration motor cortex injury neural circuits neural stem cells newborn neurons proliferation
下载PDF
El Niño and the AMO Sparked the Astonishingly Large Margin of Warming in the Global Mean Surface Temperature in 2023 被引量:2
14
作者 Kexin LI Fei ZHENG +1 位作者 Jiang ZHU Qing-Cun ZENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1017-1022,共6页
In 2023,the majority of the Earth witnessed its warmest boreal summer and autumn since 1850.Whether 2023 will indeed turn out to be the warmest year on record and what caused the astonishingly large margin of warming ... In 2023,the majority of the Earth witnessed its warmest boreal summer and autumn since 1850.Whether 2023 will indeed turn out to be the warmest year on record and what caused the astonishingly large margin of warming has become one of the hottest topics in the scientific community and is closely connected to the future development of human society.We analyzed the monthly varying global mean surface temperature(GMST)in 2023 and found that the globe,the land,and the oceans in 2023 all exhibit extraordinary warming,which is distinct from any previous year in recorded history.Based on the GMST statistical ensemble prediction model developed at the Institute of Atmospheric Physics,the GMST in 2023 is predicted to be 1.41℃±0.07℃,which will certainly surpass that in 2016 as the warmest year since 1850,and is approaching the 1.5℃ global warming threshold.Compared to 2022,the GMST in 2023 will increase by 0.24℃,with 88%of the increment contributed by the annual variability as mostly affected by El Niño.Moreover,the multidecadal variability related to the Atlantic Multidecadal Oscillation(AMO)in 2023 also provided an important warming background for sparking the GMST rise.As a result,the GMST in 2023 is projected to be 1.15℃±0.07℃,with only a 0.02℃ increment,if the effects of natural variability—including El Niño and the AMO—are eliminated and only the global warming trend is considered. 展开更多
关键词 record-breaking temperature global mean surface temperature El Niño AMO global warming
下载PDF
Alkyl dimethyl betaine activates the low-temperature collection capacity of sodium oleate for scheelite 被引量:2
15
作者 Xu Wang Zhengquan Zhang +5 位作者 Yanfang Cui Wei Li Congren Yang Hao Song Wenqing Qin Fen Jiao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期71-80,共10页
The impact of alkyl dimethyl betaine (ADB) on the collection capacity of sodium oleate (NaOl) at low temperatures was evaluated using flotation tests at various scales. The low-temperature synergistic mechanism of ADB... The impact of alkyl dimethyl betaine (ADB) on the collection capacity of sodium oleate (NaOl) at low temperatures was evaluated using flotation tests at various scales. The low-temperature synergistic mechanism of ADB and NaOl was explored by infrared spectroscopy, X-ray photoelectron spectroscopy, surface tension measurement, foam performance test, and flotation reagent size measurement.The flotation tests revealed that the collector mixed with octadecyl dimethyl betaine (ODB) and NaOl in a mass ratio of 4:96 exhibited the highest collection capacity. The combined collector could increase the scheelite recovery by 3.48% at low temperatures of 8–12℃. This is particularly relevant in the Luanchuan area, which has the largest scheelite concentrate output in China. The results confirmed that ODB enhanced the collection capability of NaOl by improving the dispersion and foaming performance. Betaine can be introduced as an additive to NaOl to improve the recovery of scheelite at low temperatures. 展开更多
关键词 SCHEELITE BETAINE low temperature synergistic effect dispersion FOAMABILITY
下载PDF
Effects of elafibranor on liver fibrosis and gut barrier function in a mouse model of alcohol-associated liver disease 被引量:8
16
作者 Aritoshi Koizumi Kosuke Kaji +10 位作者 Norihisa Nishimura Shohei Asada Takuya Matsuda Misako Tanaka Nobuyuki Yorioka Yuki Tsuji Koh Kitagawa Shinya Sato Tadashi Namisaki Takemi Akahane Hitoshi Yoshiji 《World Journal of Gastroenterology》 SCIE CAS 2024年第28期3428-3446,共19页
BACKGROUND Alcohol-associated liver disease(ALD)is a leading cause of liver-related morbidity and mortality,but there are no therapeutic targets and modalities to prevent ALD-related liver fibrosis.Peroxisome prolifer... BACKGROUND Alcohol-associated liver disease(ALD)is a leading cause of liver-related morbidity and mortality,but there are no therapeutic targets and modalities to prevent ALD-related liver fibrosis.Peroxisome proliferator activated receptor(PPAR)α and δ play a key role in lipid metabolism and intestinal barrier homeostasis,which are major contributors to the pathological progression of ALD.Meanwhile,elafibranor(EFN),which is a dual PPARαand PPARδagonist,has reached a phase III clinical trial for the treatment of metabolic dysfunctionassociated steatotic liver disease and primary biliary cholangitis.However,the benefits of EFN for ALD treatment is unknown.AIM To evaluate the inhibitory effects of EFN on liver fibrosis and gut-intestinal barrier dysfunction in an ALD mouse model.METHODS ALD-related liver fibrosis was induced in female C57BL/6J mice by feeding a 2.5% ethanol(EtOH)-containing Lieber-DeCarli liquid diet and intraperitoneally injecting carbon tetrachloride thrice weekly(1 mL/kg)for 8 weeks.EFN(3 and 10 mg/kg/day)was orally administered during the experimental period.Histological and molecular analyses were performed to assess the effect of EFN on steatohepatitis,fibrosis,and intestinal barrier integrity.The EFN effects on HepG2 lipotoxicity and Caco-2 barrier function were evaluated by cell-based assays.RESULTS The hepatic steatosis,apoptosis,and fibrosis in the ALD mice model were significantly attenuated by EFN treatment.EFN promoted lipolysis and β-oxidation and enhanced autophagic and antioxidant capacities in EtOH-stimulated HepG2 cells,primarily through PPARαactivation.Moreover,EFN inhibited the Kupffer cell-mediated inflammatory response,with blunted hepatic exposure to lipopolysaccharide(LPS)and toll like receptor 4(TLR4)/nuclear factor kappa B(NF-κB)signaling.EFN improved intestinal hyperpermeability by restoring tight junction proteins and autophagy and by inhibiting apoptosis and proinflammatory responses.The protective effect on intestinal barrier function in the EtOH-stimulated Caco-2 cells was predominantly mediated by PPARδ activation.CONCLUSION EFN reduced ALD-related fibrosis by inhibiting lipid accumulation and apoptosis,enhancing hepatocyte autophagic and antioxidant capacities,and suppressing LPS/TLR4/NF-κB-mediated inflammatory responses by restoring intestinal barrier function. 展开更多
关键词 Liver fibrosis ETHANOL Gut barrier function Apoptosis AUTOPHAGY Peroxisome proliferator activated receptor
下载PDF
Tailoring MXene Thickness and Functionalization for Enhanced Room‑Temperature Trace NO_(2) Sensing 被引量:2
17
作者 Muhammad Hilal Woochul Yang +1 位作者 Yongha Hwang Wanfeng Xie 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期71-86,共16页
In this study,precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties,environmental stability,and gas-sensing performance.Utilizing a hybrid method... In this study,precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties,environmental stability,and gas-sensing performance.Utilizing a hybrid method involving high-pressure processing,stirring,and immiscible solutions,sub-100 nm MXene flake thickness is achieved within the MXene film on the Si-wafer.Functionalization control is achieved by defunctionalizing MXene at 650℃ under vacuum and H2 gas in a CVD furnace,followed by refunctionalization with iodine and bromine vaporization from a bubbler attached to the CVD.Notably,the introduction of iodine,which has a larger atomic size,lower electronegativity,reduce shielding effect,and lower hydrophilicity(contact angle:99°),profoundly affecting MXene.It improves the surface area(36.2 cm^(2) g^(-1)),oxidation stability in aqueous/ambient environments(21 days/80 days),and film conductivity(749 S m^(-1)).Additionally,it significantly enhances the gas-sensing performance,including the sensitivity(0.1119Ωppm^(-1)),response(0.2% and 23%to 50 ppb and 200 ppm NO_(2)),and response/recovery times(90/100 s).The reduced shielding effect of the–I-terminals and the metallic characteristics of MXene enhance the selectivity of I-MXene toward NO2.This approach paves the way for the development of stable and high-performance gas-sensing two-dimensional materials with promising prospects for future studies. 展开更多
关键词 Controlled MXene thickness Gaseous functionalization approach Lower electronegativity functional groups Enhanced MXene stability Trace NO_(2)sensing
下载PDF
Competitive oxidation behavior of Ni-based superalloy GH4738 at extreme temperature 被引量:3
18
作者 Hui Xu Shufeng Yang +4 位作者 Enhui Wang Yunsong Liu Chunyu Guo Xinmei Hou Yanling Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期138-145,共8页
A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isotherm... A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isothermal experiments. As a result of the competitive diffusion of alloying elements, the oxide scale included an outermost porous oxide layer (OOL), an inner relatively dense oxide layer (IOL), and an internal oxide zone (IOZ), depending on the temperature and time. A high temperature led to the formation of large voids at the IOL/IOZ interface. At 1200℃, the continuity of the Cr-rich oxide layer in the IOL was destroyed, and thus, spallation occurred. Extension of oxidation time contributed to the size of Al-rich oxide particles with the increase in the IOZ. Based on this finding,the oxidation kinetics of GH4738 was discussed, and the corresponding oxidation behavior at 900-1100℃ was predicted. 展开更多
关键词 Ni-based superalloy GH4738 extreme temperature competitive oxidation oxidation mechanism oxidation kinetics
下载PDF
QSPR modeling of azeotropic temperatures and compositions for binary azeotropes containing lower alcohols using a genetic function approximation 被引量:6
19
作者 Yixin Ma Kang Ma +4 位作者 Huixin Wang Xueli Geng Jun Gao Zhaoyou Zhu Yinglong Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第4期835-844,共10页
Binary azeotropes, which contain two chemicals with a relative volatility of 1, are very common in the chemical industry. Understanding azeotropes is essential for effectively separating binary azeotropes containing l... Binary azeotropes, which contain two chemicals with a relative volatility of 1, are very common in the chemical industry. Understanding azeotropes is essential for effectively separating binary azeotropes containing lower alcohols. Experimental techniques and ab initio approaches can produce accurate results;however, these two processes are time consuming and labor intensive. Although thermodynamic equations such as UNIFAC are widely used, experimental values are required, and it is difficult to choose the best groups to represent a complex system. Because of their high efficiency and fast calculation speed, quantitative structure–property relationship(QSPR) tools were used in this work to predict the azeotropic temperatures and compositions of binary azeotropes containing lower alcohols. The QSPR models for 64 binary azeotropes based on centroid approximation and weighted-contribution-factor approximation were established using the genetic function approximation(GFA) procedure in Materials Studio software, and a leave-one-out cross-validation procedure was conducted.External tests of an additional 16 azeotropes were also investigated, and high determination coefficient values were obtained. The best QSPR models were explained in terms of the molecular structure of the azeotropes,and good predictive ability was obtained within acceptable prediction error levels. 展开更多
关键词 QSPR AZEOTROPIC temperature AZEOTROPIC composition Genetic function approximation BINARY AZEOTROPES
下载PDF
Machine learning-assisted efficient design of Cu-based shape memory alloy with specific phase transition temperature 被引量:2
20
作者 Mengwei Wu Wei Yong +2 位作者 Cunqin Fu Chunmei Ma Ruiping Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期773-785,共13页
The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important prac... The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys. 展开更多
关键词 machine learning support vector regression shape memory alloys martensitic transformation temperature
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部