Research on brain function after brachial plexus injury focuses on local cortical functional reorganization,and few studies have focused on brain networks after brachial plexus injury.Changes in brain networks may hel...Research on brain function after brachial plexus injury focuses on local cortical functional reorganization,and few studies have focused on brain networks after brachial plexus injury.Changes in brain networks may help understanding of brain plasticity at the global level.We hypothesized that topology of the global cerebral resting-state functional network changes after unilateral brachial plexus injury.Thus,in this cross-sectional study,we recruited eight male patients with unilateral brachial plexus injury(right handedness,mean age of 27.9±5.4years old)and eight male healthy controls(right handedness,mean age of 28.6±3.2).After acquiring and preprocessing resting-state magnetic resonance imaging data,the cerebrum was divided into 90 regions and Pearson’s correlation coefficient calculated between regions.These correlation matrices were then converted into a binary matrix with affixed sparsity values of 0.1–0.46.Under sparsity conditions,both groups satisfied this small-world property.The clustering coefficient was markedly lower,while average shortest path remarkably higher in patients compared with healthy controls.These findings confirm that cerebral functional networks in patients still show smallworld characteristics,which are highly effective in information transmission in the brain,as well as normal controls.Alternatively,varied small-worldness suggests that capacity of information transmission and integration in different brain regions in brachial plexus injury patients is damaged.展开更多
The ability of the adult central nervous system to reorganize its circuits over time is the key to understand the functional improvement in subjects with spinal cord injury (SCI). Adaptive changes within spared neur...The ability of the adult central nervous system to reorganize its circuits over time is the key to understand the functional improvement in subjects with spinal cord injury (SCI). Adaptive changes within spared neuronal circuits may occur at cortical, brainstem, or spinal cord level, both above and below a spinal lesion (Bareyre et al., 2004). At each level the reorganization is a very dynamic process, and its degree is highly variable, depending on several factors, including the age of the subject when SCI has occurred and the rehabilitative therapy. The use of electrophysiological techniques to assess these functional changes in neural networks is of great interest, because invasive methodologies as employed in preclinical models can obviously not be used in clinical studies.展开更多
The finding that adult neurogenesis occurs constitutively in the brain was a breakthrough in neuroscience and soon gained attention as a possible mechanism for neurorepair after brain damage. In a recent study we show...The finding that adult neurogenesis occurs constitutively in the brain was a breakthrough in neuroscience and soon gained attention as a possible mechanism for neurorepair after brain damage. In a recent study we show that the dentate gyrus (DG) reorganizes anatomically over neurons undergo maturation time after damage, while new and activate in response to a contextual fear memory recall (Aguilar-Arredondo and Zepeda, 2018). These findings provide new evidence on the possible role of neurogenesis in cognitive recovery after brain injury.展开更多
Hemiplegia after stroke has become a major cause of the world's high disabilities,and it is vital to enhance our understanding of post-stroke neuroplasticity to develop e±cient rehabilitation programs.This st...Hemiplegia after stroke has become a major cause of the world's high disabilities,and it is vital to enhance our understanding of post-stroke neuroplasticity to develop e±cient rehabilitation programs.This study aimed to explore the brain activation and network reorganization of the motor cortex(MC)with functional near-infrared spectroscopy(fNIRS).The MC hemodynamic signals were gained from 22 stroke patients and 14 healthy subjects during a shoulder-touching task with the right hand.The MC activation pattern and network attributes analyzed with the graph theory were compared between the two groups.The results revealed that healthy controls presented dominant activation in the left MC while stroke patients exhibited dominant activation in the bilateral hemispheres MC.The MC networks for the two groups had small-world properties.Compared with healthy controls,patients had higher transitivity and lower global e±ciency(GE),mean connectivity,and long connections(LCs)in the left MC.In addition,both MC activation and network attributes were correlated with patient's upper limb motor function.The results showed the stronger compensation of the unaffected motor area,the better recovery of the upper limb motor function for patients.Moreover,the MC network possessed high clustering and relatively sparse inter-regional connections during recovery for patients.Our results promote the understanding of MC reorganization during recovery and indicate that MC activation and network could provide clinical assessment signi¯cance in stroke patients.Given the advantages of fNIRS,it shows great application potential in the assessment and rehabilitation of motor function after stroke.展开更多
Stroke causes long-term disability, and rehabilitative training is commonly used to improve the consecutive functional recovery. Following brain damage, surviving neurons undergo morphological alterations to reconstru...Stroke causes long-term disability, and rehabilitative training is commonly used to improve the consecutive functional recovery. Following brain damage, surviving neurons undergo morphological alterations to reconstruct the remaining neural network. In the motor system, such neural network remodeling is observed as a motor map reorganization. Because of its significant correlation with functional recovery, motor map reorganization has been regarded as a key phenomenon for functional recovery after stroke. Although the mechanism underlying motor map reorganization remains unclear, increasing evidence has shown a critical role for axonal remodeling in the corticospinal tract. In this study, we review previous studies investigating axonal remodeling in the corticospinal tract after stroke and discuss which mechanisms may underlie the stimulatory effect of rehabilitative training. Axonal remodeling in the corticospinal tract can be classified into three types based on the location and the original targets of corticospinal neurons, and it seems that all the surviving corticospinal neurons in both ipsilesional and contralesional hemisphere can participate in axonal remodeling and motor map reorganization. Through axonal remodeling, corticospinal neurons alter their output selectivity from a single to multiple areas to compensate for the lost function. The remodeling of the corticospinal axon is influenced by the extent of tissue destruction and promoted by various therapeutic interventions, including rehabilitative training. Although the precise molecular mechanism underlying rehabilitation-promoted axonal remodeling remains elusive, previous data suggest that rehabilitative training promotes axonal remodeling by upregulating growth-promoting and downregulating growth-inhibiting signals.展开更多
From the perspective view of Chinese medicine,the Gan(Liver)meridian of Foot-Jueyin starts from the great toe,running upward along the medial side of the thigh to the perineal area,where it curves around the external ...From the perspective view of Chinese medicine,the Gan(Liver)meridian of Foot-Jueyin starts from the great toe,running upward along the medial side of the thigh to the perineal area,where it curves around the external genitalia and goes up to the lower abdomen.In clinical practice,acupoints in the feet of the Gan meridian of Foot-Jueyin are used to treat the genitourinary and external genitalia diseases.Studies have shown that reproductive system diseases have specific pathological reactions in the places(radial side of tibia and foot)where Gan meridian of Foot-Jueyin passes by.Why does this happen?In this article,we begin by briefly reviewing the evidences linking foot and genitalia.We then explore the potential mechanism of the relationship between genitals and the Gan meridian of Foot-Jueyin.The brain cerebral cortex is characterized by cortical interactions.Numerous studies show that different cerebral cortex function areas(especially the adjacent areas)are overlapping and interact with each other.Finally,we presume that there is a specific connection between the feet and the genitals.Physiologically in the cortical homunculus,the genital area lies adjacent or overlapped to the foot areas,the two areas may interact with each other.The functional reorganization between different areas of the cerebral cortex under pathological conditions may be the underlying mechanism of the relationship between the feet and the genitals.展开更多
文摘Research on brain function after brachial plexus injury focuses on local cortical functional reorganization,and few studies have focused on brain networks after brachial plexus injury.Changes in brain networks may help understanding of brain plasticity at the global level.We hypothesized that topology of the global cerebral resting-state functional network changes after unilateral brachial plexus injury.Thus,in this cross-sectional study,we recruited eight male patients with unilateral brachial plexus injury(right handedness,mean age of 27.9±5.4years old)and eight male healthy controls(right handedness,mean age of 28.6±3.2).After acquiring and preprocessing resting-state magnetic resonance imaging data,the cerebrum was divided into 90 regions and Pearson’s correlation coefficient calculated between regions.These correlation matrices were then converted into a binary matrix with affixed sparsity values of 0.1–0.46.Under sparsity conditions,both groups satisfied this small-world property.The clustering coefficient was markedly lower,while average shortest path remarkably higher in patients compared with healthy controls.These findings confirm that cerebral functional networks in patients still show smallworld characteristics,which are highly effective in information transmission in the brain,as well as normal controls.Alternatively,varied small-worldness suggests that capacity of information transmission and integration in different brain regions in brachial plexus injury patients is damaged.
文摘The ability of the adult central nervous system to reorganize its circuits over time is the key to understand the functional improvement in subjects with spinal cord injury (SCI). Adaptive changes within spared neuronal circuits may occur at cortical, brainstem, or spinal cord level, both above and below a spinal lesion (Bareyre et al., 2004). At each level the reorganization is a very dynamic process, and its degree is highly variable, depending on several factors, including the age of the subject when SCI has occurred and the rehabilitative therapy. The use of electrophysiological techniques to assess these functional changes in neural networks is of great interest, because invasive methodologies as employed in preclinical models can obviously not be used in clinical studies.
基金supported by Consejo Nacional de Ciencia y Tecnología(CONACyT)282470(to AZ)
文摘The finding that adult neurogenesis occurs constitutively in the brain was a breakthrough in neuroscience and soon gained attention as a possible mechanism for neurorepair after brain damage. In a recent study we show that the dentate gyrus (DG) reorganizes anatomically over neurons undergo maturation time after damage, while new and activate in response to a contextual fear memory recall (Aguilar-Arredondo and Zepeda, 2018). These findings provide new evidence on the possible role of neurogenesis in cognitive recovery after brain injury.
基金was supported by the National Key Research and Development Program of China(Nos.2020YFC2004300,2020YFC2004303 and 2020YFC2004302)the National Natural Science Foundation of China(Nos.32000980 and 82171533)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(Nos.2022A1515140142,2019A1515110427 and 2020B1515120014)the Key Laboratory Program of Guangdong Higher Education Institutes(No.2020KSYS001)。
文摘Hemiplegia after stroke has become a major cause of the world's high disabilities,and it is vital to enhance our understanding of post-stroke neuroplasticity to develop e±cient rehabilitation programs.This study aimed to explore the brain activation and network reorganization of the motor cortex(MC)with functional near-infrared spectroscopy(fNIRS).The MC hemodynamic signals were gained from 22 stroke patients and 14 healthy subjects during a shoulder-touching task with the right hand.The MC activation pattern and network attributes analyzed with the graph theory were compared between the two groups.The results revealed that healthy controls presented dominant activation in the left MC while stroke patients exhibited dominant activation in the bilateral hemispheres MC.The MC networks for the two groups had small-world properties.Compared with healthy controls,patients had higher transitivity and lower global e±ciency(GE),mean connectivity,and long connections(LCs)in the left MC.In addition,both MC activation and network attributes were correlated with patient's upper limb motor function.The results showed the stronger compensation of the unaffected motor area,the better recovery of the upper limb motor function for patients.Moreover,the MC network possessed high clustering and relatively sparse inter-regional connections during recovery for patients.Our results promote the understanding of MC reorganization during recovery and indicate that MC activation and network could provide clinical assessment signi¯cance in stroke patients.Given the advantages of fNIRS,it shows great application potential in the assessment and rehabilitation of motor function after stroke.
基金supported by the JSPSKAKENHI Grant-in-Aid for Scientific Research(B),Grant Numbers24700572 and 30614276
文摘Stroke causes long-term disability, and rehabilitative training is commonly used to improve the consecutive functional recovery. Following brain damage, surviving neurons undergo morphological alterations to reconstruct the remaining neural network. In the motor system, such neural network remodeling is observed as a motor map reorganization. Because of its significant correlation with functional recovery, motor map reorganization has been regarded as a key phenomenon for functional recovery after stroke. Although the mechanism underlying motor map reorganization remains unclear, increasing evidence has shown a critical role for axonal remodeling in the corticospinal tract. In this study, we review previous studies investigating axonal remodeling in the corticospinal tract after stroke and discuss which mechanisms may underlie the stimulatory effect of rehabilitative training. Axonal remodeling in the corticospinal tract can be classified into three types based on the location and the original targets of corticospinal neurons, and it seems that all the surviving corticospinal neurons in both ipsilesional and contralesional hemisphere can participate in axonal remodeling and motor map reorganization. Through axonal remodeling, corticospinal neurons alter their output selectivity from a single to multiple areas to compensate for the lost function. The remodeling of the corticospinal axon is influenced by the extent of tissue destruction and promoted by various therapeutic interventions, including rehabilitative training. Although the precise molecular mechanism underlying rehabilitation-promoted axonal remodeling remains elusive, previous data suggest that rehabilitative training promotes axonal remodeling by upregulating growth-promoting and downregulating growth-inhibiting signals.
基金Supported by the National Key Research and Development Program of China(No.2019YFC1709100No.2019YFC1709102)National Natural Science Foundation of China(No.81673888)。
文摘From the perspective view of Chinese medicine,the Gan(Liver)meridian of Foot-Jueyin starts from the great toe,running upward along the medial side of the thigh to the perineal area,where it curves around the external genitalia and goes up to the lower abdomen.In clinical practice,acupoints in the feet of the Gan meridian of Foot-Jueyin are used to treat the genitourinary and external genitalia diseases.Studies have shown that reproductive system diseases have specific pathological reactions in the places(radial side of tibia and foot)where Gan meridian of Foot-Jueyin passes by.Why does this happen?In this article,we begin by briefly reviewing the evidences linking foot and genitalia.We then explore the potential mechanism of the relationship between genitals and the Gan meridian of Foot-Jueyin.The brain cerebral cortex is characterized by cortical interactions.Numerous studies show that different cerebral cortex function areas(especially the adjacent areas)are overlapping and interact with each other.Finally,we presume that there is a specific connection between the feet and the genitals.Physiologically in the cortical homunculus,the genital area lies adjacent or overlapped to the foot areas,the two areas may interact with each other.The functional reorganization between different areas of the cerebral cortex under pathological conditions may be the underlying mechanism of the relationship between the feet and the genitals.