In this study,the fractal dimensions of velocity fluctuations and the Reynolds shear stresses propagation for flow around a circular bridge pier are presented.In the study reported herein,the fractal dimension of velo...In this study,the fractal dimensions of velocity fluctuations and the Reynolds shear stresses propagation for flow around a circular bridge pier are presented.In the study reported herein,the fractal dimension of velocity fluctuations(u′,v′,w′) and the Reynolds shear stresses(u′v′ and u′w′) of flow around a bridge pier were computed using a Fractal Interpolation Function(FIF) algorithm.The velocity fluctuations of flow along a horizontal plane above the bed were measured using Acoustic Doppler Velocity meter(ADV)and Particle Image Velocimetry(P1V).The PIV is a powerful technique which enables us to attain high resolution spatial and temporal information of turbulent flow using instantaneous time snapshots.In this study,PIV was used for detection of high resolution fractal scaling around a bridge pier.The results showed that the fractal dimension of flow fluctuated significantly in the longitudinal and transverse directions in the vicinity of the pier.It was also found that the fractal dimension of velocity fluctuations and shear stresses increased rapidly at vicinity of pier at downstream whereas it remained approximately unchanged far downstream of the pier.The higher value of fractal dimension was found at a distance equal to one times of the pier diameter in the back of the pier.Furthermore,the average fractal dimension for the streamwise and transverse velocity fluctuations decreased from the centreline to the side wall of the flume.Finally,the results from ADV measurement were consistent with the result from PIV,therefore,the ADV enables to detect turbulent characteristics of flow around a circular bridge pier.展开更多
The microscopic characteristics of skeletal particles in rock and soil media have important effects on macroscopic mechanical properties. A mathematical procedure called spherical harmonic function analysis was here d...The microscopic characteristics of skeletal particles in rock and soil media have important effects on macroscopic mechanical properties. A mathematical procedure called spherical harmonic function analysis was here developed to characterize micromorphology of particles and determine the meso effects in a discrete manner. This method has strong mathematical properties with respect to orthogonality and rotating invariance. It was used here to characterize and reconstruct particle micromorphology in three-dimensional space. The applicability and accuracy of the method were assessed through comparison of basic geometric properties such as volume and surface area. The results show that the micromorphological characteristics of reproduced particles become more and more readily distinguishable as the reproduced order number of spherical harmonic function increases, and the error can be brought below 5% when the order number reaches 10. This level of precision is sharp enough to distinguish the characteristics of real particles. Reconstructed particles of the same size but different reconstructed orders were used to form cylindrical samples, and the stress-strain curves of these samples filled with different-order particles which have their mutual morphological features were compared using PFC3D. Results show that the higher the spherical harmonic order of reconstructed particles, the lower the initial compression modulus and the larger the strain at peak intensity. However, peak strength shows only a random relationship to spherical harmonic order. Microstructure reconstruction was here shown to be an efficient means of numerically simulating of multi-scale rock and soil media and studying the mechanical properties of soil samples.展开更多
文摘In this study,the fractal dimensions of velocity fluctuations and the Reynolds shear stresses propagation for flow around a circular bridge pier are presented.In the study reported herein,the fractal dimension of velocity fluctuations(u′,v′,w′) and the Reynolds shear stresses(u′v′ and u′w′) of flow around a bridge pier were computed using a Fractal Interpolation Function(FIF) algorithm.The velocity fluctuations of flow along a horizontal plane above the bed were measured using Acoustic Doppler Velocity meter(ADV)and Particle Image Velocimetry(P1V).The PIV is a powerful technique which enables us to attain high resolution spatial and temporal information of turbulent flow using instantaneous time snapshots.In this study,PIV was used for detection of high resolution fractal scaling around a bridge pier.The results showed that the fractal dimension of flow fluctuated significantly in the longitudinal and transverse directions in the vicinity of the pier.It was also found that the fractal dimension of velocity fluctuations and shear stresses increased rapidly at vicinity of pier at downstream whereas it remained approximately unchanged far downstream of the pier.The higher value of fractal dimension was found at a distance equal to one times of the pier diameter in the back of the pier.Furthermore,the average fractal dimension for the streamwise and transverse velocity fluctuations decreased from the centreline to the side wall of the flume.Finally,the results from ADV measurement were consistent with the result from PIV,therefore,the ADV enables to detect turbulent characteristics of flow around a circular bridge pier.
基金Project(2015CB057903)supported by the National Basic Research Program of ChinaProjects(51679071,51309089)supported by the National Natural Science Foundation of China+2 种基金Project(BK20130846)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(2013BAB06B00)supported by the National Key Technology R&D Program,ChinaProject(2015B06014)supported by the Fundamental Research Funds for the Central Universities,China
文摘The microscopic characteristics of skeletal particles in rock and soil media have important effects on macroscopic mechanical properties. A mathematical procedure called spherical harmonic function analysis was here developed to characterize micromorphology of particles and determine the meso effects in a discrete manner. This method has strong mathematical properties with respect to orthogonality and rotating invariance. It was used here to characterize and reconstruct particle micromorphology in three-dimensional space. The applicability and accuracy of the method were assessed through comparison of basic geometric properties such as volume and surface area. The results show that the micromorphological characteristics of reproduced particles become more and more readily distinguishable as the reproduced order number of spherical harmonic function increases, and the error can be brought below 5% when the order number reaches 10. This level of precision is sharp enough to distinguish the characteristics of real particles. Reconstructed particles of the same size but different reconstructed orders were used to form cylindrical samples, and the stress-strain curves of these samples filled with different-order particles which have their mutual morphological features were compared using PFC3D. Results show that the higher the spherical harmonic order of reconstructed particles, the lower the initial compression modulus and the larger the strain at peak intensity. However, peak strength shows only a random relationship to spherical harmonic order. Microstructure reconstruction was here shown to be an efficient means of numerically simulating of multi-scale rock and soil media and studying the mechanical properties of soil samples.