Non-stationary time series could be divided into piecewise stationary stochastic signal. However, the number and locations of breakpoints, as well as the approximation function of the respective segment signal are unk...Non-stationary time series could be divided into piecewise stationary stochastic signal. However, the number and locations of breakpoints, as well as the approximation function of the respective segment signal are unknown. To solve this problem, a novel on-line structural breaks estimation algorithm based on piecewise autoregressive processes is proposed. In order to find the "best" combination of the number, lengths, and orders of the piecewise autoregressive (AR) processes, the Akaikes Information Criterion (AIC) and Yule-Walker equations are applied to estimate an AR model fit to the data. Numerical results demonstrate that the proposed estimation algorithm is suitable for different data series. Furthermore, the algorithm is used in a clinical study of electroencephalogram (EEG) with satisfactory results, and the ability to deal with real-time data is the most outstanding characteristic of on-line structural breaks estimation algorithm proposed.展开更多
Using first-principle calculations, we investigate the mechanical, structural, and electronic properties and formation energy of 25 kinds of Ⅲ–V binary monolayers in detail. A relative radius of the binary compound ...Using first-principle calculations, we investigate the mechanical, structural, and electronic properties and formation energy of 25 kinds of Ⅲ–V binary monolayers in detail. A relative radius of the binary compound according to the atomic number in the periodic table is defined, and based on the definition, the 25 kinds of Ⅲ–V binary compounds are exactly located at a symmetric position in a symmetric matrix. The mechanical properties and band gaps are found to be very dependent on relative radius, while the effective mass of holes and electrons are found to be less dependent. A linear function between Young’s modulus and formation energy is fitted with a linear relation in this paper. The change regularity of physical properties of B–V(V = P, As, Sb, Bi) and Ⅲ–N(Ⅲ = Al, Ga, In, Tl) are found to be very different from those of other Ⅲ–V binary compounds.展开更多
Background:Assessing functional diversity to identify its spatial patterns and drivers is an important step towards understanding the adaptive capacity of ecosystems to environmental change. However, until now, these ...Background:Assessing functional diversity to identify its spatial patterns and drivers is an important step towards understanding the adaptive capacity of ecosystems to environmental change. However, until now, these mechanisms were poorly understood in the temperate forests of northeastern China, which prevented the development of new management methods aimed at increasing functional trait diversity and thus ecological resilience.Methods:In this study, we mapped functional diversity distributions using a Kriging Interpolation Method. A specific random forest model approach was adopted to test the importance ranking of 18 variables in explaining the spatial variation of functional diversity. Three piecewise structural equation models (pSEMs) with forest types as random effects were constructed for testing the direct effects of climate, and the indirect effects of stand structure on functional diversity across the large study region. Specific causal relationships in each forest type were also examined using 15 linear structural equation models.Results:Although environmental filtering by climate is important, stand structure explains most of the functional variation of the forest ecosystems in northeastern China. Our study thus only partially supports the stressdominance hypothesis. Several abundant species determine most of the functional diversity, which supports the mass ratio hypothesis.Conclusions:Our results suggest that forest management aimed at increasing structural complexity can contribute to increased functional diversity, especially regarding the mixing of coniferous and broad-leaved tree species.展开更多
A multifractal model is developed to connect the Lagrangian multifractal dimensions with their Eulerian counterparts. We propose that the characteristic time scale of a Lagrangian quantity should be the Lagrangian tim...A multifractal model is developed to connect the Lagrangian multifractal dimensions with their Eulerian counterparts. We propose that the characteristic time scale of a Lagrangian quantity should be the Lagrangian time scale, and it should not be the Eulerian time scale which was widely used in previous studies on Lagrangian statistics. Using the present model, we can obtain the scaling exponents of Lagrangian velocity structure functions from the existing data or models of scaling exponents of Eulerian velocity structure functions. This model is validated by comparing its prediction with the results of experiments, direct numerical simulations, and the previous theoretical models. The comparison shows that the proposed model can better predict the scaling exponents of Lagrangian velocity structure functions, especially for orders larger than 6.展开更多
A concept of the independent-continuous topological variable is proposed to establish its corresponding smooth model of structural topological optimization. The method can overcome difficulties that are encountered in...A concept of the independent-continuous topological variable is proposed to establish its corresponding smooth model of structural topological optimization. The method can overcome difficulties that are encountered in conventional models and algorithms for the optimization of the structural topology. Its application to truss topological optimization with stress and displacement constraints is satisfactory, with convergence faster than that of sectional optimizations.展开更多
Closure models started from Chou's work have been developed for more than 70 years, aiming at providing analytical tools to describe turbulent flows in the spectral space. In this study, a preliminary attempt is pres...Closure models started from Chou's work have been developed for more than 70 years, aiming at providing analytical tools to describe turbulent flows in the spectral space. In this study, a preliminary attempt is presented to introduce a closure model in the physical space, using the velocity structure functions as key parameters. The present closure model appears to qualitatively reproduce the asymptotic scaling behav- iors at small and large scales, despite some inappropriate behaviors such as oscillations. Therefore, further improvements of the present model are expected to provide appropriate descriptions of turbulent flows in the physical space.展开更多
Based on a simple nonrelativistic constituent quark model, the nucleon structure function F<SUB>2</SUB> in the resonance region is estimated by taking the contributions from low-lying nucleon resonances in...Based on a simple nonrelativistic constituent quark model, the nucleon structure function F<SUB>2</SUB> in the resonance region is estimated by taking the contributions from low-lying nucleon resonances into account. Calculated results are employed to study quark-hardon duality in the nucleon electron scattering process by comparing them to the scaling behavior from the data in deep inelastic scattering region.展开更多
The equilibrium lattice parameters, electronic structure, bulk modulus, Debye temperature, heat capacity and Gibbs energy of TiB and TiB2 were investigated using the pseudopotential plane-wave method based on density ...The equilibrium lattice parameters, electronic structure, bulk modulus, Debye temperature, heat capacity and Gibbs energy of TiB and TiB2 were investigated using the pseudopotential plane-wave method based on density functional theory (DFT) and the improved quasi-harmonic Debye method. The results show that the total density of states (DOS) of TiB2 is mainly provided by the orbit hybridization of Ti-3d and B-2p states, and the total DOS of TiB is mainly provided by the hybrids bond of Ti-3d and B-2p below the Fermi level and Ti—Ti bond up to the Fermi level. The Ti—B hybrid bond in TiB2 is stronger than that in TiB. Finally, the enthalpy of formation at 0 K, heat capacity and Gibbs free energy of formation at various temperatures were determined. The calculated results are in excellent agreement with the available experimental data.展开更多
Background: Pregnancy associated glycoproteins form a diverse family of glycoproteins that are variably expressed at different stages of gestation. They are probably involved in immunosuppression of the dam against t...Background: Pregnancy associated glycoproteins form a diverse family of glycoproteins that are variably expressed at different stages of gestation. They are probably involved in immunosuppression of the dam against the fetomaternal placentome. The presence of the products of binucleate cells in maternal circulation has also been correlated with placentogenesis and placental re-modeling. The exact structure and function of the gene product is unknown due to limitations on obtaining purified pregnancy associated glycoprotein preparations.Results: Our study describes an in silico derived 3D model for bubaline pregnancy associated glycoprotein 2. Structure-activity features of the protein were characterized, and functional studies predict bubaline pregnancy associated glycoprotein 2 as an inducible, extra-cellular, non-essential, N-glycosylated, aspartic pro-endopeptidase that is involved in down-regulation of complement pathway and immunity during pregnancy. The protein is also predicted to be involved in nutritional processes, and apoptotic processes underlying fetal morphogenesis and remodeling of feto-maternal tissues.Conclusion: The structural and functional annotation of buPAG2 shall allow the designing of mutants and inhibitors for dissection of the exact physiological role of the protein.展开更多
Despite dedicated effort for many decades,statistical description of highly technologically important wall turbulence remains a great challenge.Current models are unfortunately incomplete,or empirical,or qualitative.A...Despite dedicated effort for many decades,statistical description of highly technologically important wall turbulence remains a great challenge.Current models are unfortunately incomplete,or empirical,or qualitative.After a review of the existing theories of wall turbulence,we present a new framework,called the structure ensemble dynamics (SED),which aims at integrating the turbulence dynamics into a quantitative description of the mean flow.The SED theory naturally evolves from a statistical physics understanding of non-equilibrium open systems,such as fluid turbulence, for which mean quantities are intimately coupled with the fluctuation dynamics.Starting from the ensemble-averaged Navier-Stokes(EANS) equations,the theory postulates the existence of a finite number of statistical states yielding a multi-layer picture for wall turbulence.Then,it uses order functions(ratios of terms in the mean momentum as well as energy equations) to characterize the states and transitions between states.Application of the SED analysis to an incompressible channel flow and a compressible turbulent boundary layer shows that the order functions successfully reveal the multi-layer structure for wall-bounded turbulence, which arises as a quantitative extension of the traditional view in terms of sub-layer,buffer layer,log layer and wake. Furthermore,an idea of using a set of hyperbolic functions for modeling transitions between layers is proposed for a quantitative model of order functions across the entire flow domain.We conclude that the SED provides a theoretical framework for expressing the yet-unknown effects of fluctuation structures on the mean quantities,and offers new methods to analyze experimental and simulation data.Combined with asymptotic analysis,it also offers a way to evaluate convergence of simulations.The SED approach successfully describes the dynamics at both momentum and energy levels, in contrast with all prevalent approaches describing the mean velocity profile only.Moreover,the SED theoretical framework is general,independent of the flow system to study, while the actual functional form of the order functions may vary from flow to flow.We assert that as the knowledge of order functions is accumulated and as more flows are analyzed, new principles(such as hierarchy,symmetry,group invariance,etc.) governing the role of turbulent structures in the mean flow properties will be clarified and a viable theory of turbulence might emerge.展开更多
Structural health monitoring is important to ensuring the health and safety of dams.An inverse analysis method based on a novel hybrid fireworks algorithm (FWA) and the radial basis function (RBF) model is proposed to...Structural health monitoring is important to ensuring the health and safety of dams.An inverse analysis method based on a novel hybrid fireworks algorithm (FWA) and the radial basis function (RBF) model is proposed to diagnose the health condition of concrete dams.The damage of concrete dams is diagnosed by identifying the elastic modulus of materials using the displacement changes at different reservoir water levels.FWA is a global optimization intelligent algorithm.The proposed hybrid algorithm combines the FWA with the pattern search algorithm, which has a high capability for local optimization.Examples of benchmark functions and pseudo-experiment examples of concrete dams illustrate that the hybrid FWA improves the convergence speed and robustness of the original algorithm.To address the time consumption problem, an RBF-based surrogate model was established to replace part of the finite element method in inverse analysis.Numerical examples of concrete dams illustrate that the use of an RBF-based surrogate model significantly reduces the computation time of inverse analysis with little influence on identification accuracy.The presented hybrid FWA combined with the RBF network can quickly and accurately determine the elastic modulus of materials, and then determine the health status of the concrete dam.展开更多
Soil-rock mixture (SRM) is a unique type of geomaterial characterized by a heterogeneous composition and a complicated structure. It is intractable for the continuum-based soil and rock mechanics theories to accurat...Soil-rock mixture (SRM) is a unique type of geomaterial characterized by a heterogeneous composition and a complicated structure. It is intractable for the continuum-based soil and rock mechanics theories to accurately characterize and predict the SRM's mechanical properties. This study reports a novel numerical method incorporating microfocus computed tomography and PFC3D codes to probe the deformation and failure processes of SRM. The three-dimensional (3D) PFC models that represent the SRM's complex structures were built. By simulating the entire failure process in PFC3D, the SRM's strength, elastic modulus and crack growth were obtained. The influence of rock ratios on the SRM's strength, deformation and failure processes, as well as its internal mesoscale mechanism, were analyzed. By comparing simulation results with experimental data, it was verified that the 3D PFC models were in good agreement with SRM's real structure and the SRM's compression process, deformation and failure patterns; its intrinsic mesomechanism can be effectively analyzed based on such 3D PFC models.展开更多
Background:The impacts of selective logging on ecosystem multifunctionality(EMF)remain largely unexplored.In this study,we analyzed the response of nine variables related to four ecosystem functions(i.e.nutrient cycli...Background:The impacts of selective logging on ecosystem multifunctionality(EMF)remain largely unexplored.In this study,we analyzed the response of nine variables related to four ecosystem functions(i.e.nutrient cycling,soil carbon stocks,decomposition,and wood production)to five selective logging intensities in a Pinus yunnanensisdominated forest.We included a control group with no harvest to evaluate the potential shifts in EMF of the P.yunnanensis forests.We also assessed the relationship between above-and belowground biodiversity and EMF under these different selective logging intensities.Additionally,we evaluated the effects of biotic and abiotic factors on EMF using a structural equation modeling(SEM)approach.Results:Individual ecosystem functions(EFs)all had a significant positive correlation with selective logging intensity.Different EFs showed different patterns with the increase of selective logging intensity.We found that EMF tended to increase with logging intensity,and that EMF significantly improved when the stand was harvested at least twice.Both functional diversity and soil moisture had a significant positive correlation with EMF,but soil fungal operational taxonomic units(OTUs)had a significant negative correlation with EMF.Based on SEM,we found that selective logging improved EMF mainly by increasing functional diversity.Conclusion:Our study demonstrates that selective logging is a good management technique from an EMF perspective,and thus provide us with potential guidelines to improve forest management in P.yunnanensis forests in this region.The functional diversity is maximized through reasonable selective logging measures,so as to enhance EMF.展开更多
The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformatio...The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformation, it is necessary to consider the transverse periodic movement of stock in the rolling deformation area which is caused by the flexural deformation movement of roll system simul- taneously. Therefore, the displacement field of roll system and flow of metal in the deformation area is described by kinematic analysis in the dynamic system. Through intro- ducing the lateral displacement function of metal in the deformation area, the dynamic variation of per unit width rolling force can be determined at the same time. Then the coupling law caused by the co-effect of rigid movement and flexural deformation of the system structural elements is determined. Furthermore, a multi-parameter coupling dynamic model of the roll system and stock is established by the principle of virtual work. More explicitly, the cou- pled motion modal analysis was made for the roll system. Meanwhile, the analytical solutions for the flexural defor- mation movement's mode shape functions of rolls are discussed. In addition, the dynamic characteristic of the lateral flow of metal in the rolling deformation area has been analyzed at the same time. The establishment ofdynamic lateral displacement function of metal in the deformation area makes the foundation for analyzing the coupling law between roll system and rolling deformation area, and provides a theoretical basis for the realization of the dynamic shape control of steel strip.展开更多
The present study focuses on the analysis of free vibrations of axisymmetric functionally graded hollow spheres. The material is assumed to be graded in radial di- rection with a simple power law. Matrix Frrbenious me...The present study focuses on the analysis of free vibrations of axisymmetric functionally graded hollow spheres. The material is assumed to be graded in radial di- rection with a simple power law. Matrix Frrbenious method of extended power series is employed to derive the analytical solutions for displacement, temperature, and stresses. The dispersion relations for the existence of various types of pos- sible modes of vibrations in the considered hollow sphere are derived in a compact form. In order to explore the character- istics of vibrations, the secular equations are further solved by using fixed point iteration numerical technique with the help of MATLAB software. The numerical results have been presented graphically for polymethyl methecrylate materials in respect of natural frequencies, frequency shift, inverse quality factor, displacement, temperature change, and radial stress.展开更多
The thermodynamic properties of Mg Ca Si and its mother phase Ca2 Si are comparatively investigated from ab initio calculations and quasi-harmonic Debye-Grüneisen model. At 0 K, Mg Ca Si is more thermodynamically...The thermodynamic properties of Mg Ca Si and its mother phase Ca2 Si are comparatively investigated from ab initio calculations and quasi-harmonic Debye-Grüneisen model. At 0 K, Mg Ca Si is more thermodynamically stable. Under high temperature, the advantage of higher thermodynamically stability of Mg Ca Si is reduced, originating from the less negative entropy contribution because the thermodynamic entropy of Mg Ca Si increases more slowly with temperature and the entropy values are slightly smaller.With increasing temperature, the anti-softening ability for Mg Ca Si is slightly smaller due to the slightly faster decrease trend of bulk modulus than that of Ca2 Si, although the bulk modulus of Mg Ca Si is higher in the whole temperature range considered. The thermal expansion behaviors of both Mg Ca Si and Ca_(2)Si exhibit similar increase trend, although thermal expansion coefficient of MgCaSi is slightly lower and the increases is slightly slower at lower temperature. The isochoric heat capacity CVand isobaric heat capacity CPof MgCaSi and Ca_(2)Si rise nonlinearly with temperature, and both CVare close to the Dulong–Petit limit at high temperature due to the negligibly small electronic contribution. The Debye temperature of both phases decrease with increasing temperature, and the downtrend for Mg Ca Si is slightly faster.However, MgCaSi possess slightly higher Debye temperature, implying the stronger chemical bonds and higher thermal conductivity than the mother phase Ca_(2)Si. The Grüneisen parameter of MgCaSi and Ca_(2)Si increase slightly with temperature, the values of MgCaSi are slightly larger. The investigation of electronic structures shows that with substitution of partial Ca by Mg in Ca_(2)Si, the stronger MgASi,MgACa and SiASi covalent bonds are formed, and plays a very significant role for the structural stability and mechanical properties.展开更多
Nanohairs, which can be found on the epidermis of Tokay gecko's toes, contribute to the adhesion by means of van der Waals force, capillary force, etc. This structure has inspired many researchers to fabricate the at...Nanohairs, which can be found on the epidermis of Tokay gecko's toes, contribute to the adhesion by means of van der Waals force, capillary force, etc. This structure has inspired many researchers to fabricate the attachable nano-scale structures. However, the efficiency of artificial nano-scale structures is not reliable sufficiently. Moreover, the mechanical parameters related to the nano-hair attachment are not yet revealed qualitatively. The mechanical parameters which have influence on the ability of adhesive nano-hairs were investigated through numerical simulation in which only van der Waals force was considered. For the numerical analysis, finite element method was utilized and van der Waals force, assumed as 12-6 Lennard-Jones potential, was implemented as the body force term in the finite element formulation.展开更多
In the last decade, functional-structural plant modelling (FSPM) has become a more widely accepted paradigm in crop and tree production, as 3D models for the most important crops have been proposed. Given the wider ...In the last decade, functional-structural plant modelling (FSPM) has become a more widely accepted paradigm in crop and tree production, as 3D models for the most important crops have been proposed. Given the wider portfolio of available models, it is now appropriate to enter the next level in FSPM development, by introducing more efficient methods for model development. This includes the consideration of model reuse (by modularisafion), combination and comparison, and the enhancement of existing mod- els. To facilitate this process, standards for design and communication need to be defined and established. We present a first step towards an efficient and general, i.e., not speciesspecific FSPM, presently restricted to annual or bi-annual plants, but with the potential for extension and further generalization. Model structure is hierarchical and object-oriented, with plant organs being the base-level objects and plant individual and canopy the higher-level objects. Modules for the majority of physiological processes are incorporated, more than in other platforms that have a similar aim (e.g., photosynthesis, organ formation and growth). Simulation runs with several general parameter sets adopted from the literature show that the present prototype was able to reproduce a plausible output range for different crops (rapeseed, barley, etc.) in terms of both the dynamics and final values (at harvest time) of model state variables such as assimilate production, organ biomass, leaf area and architecture.展开更多
1,2-Benzothiazine derivatives methyl 3-methoxy-4-oxo-3,4-dihydro-2H-benzo[e] [1,2]thiazine-3-carboxylate 1,1-dioxide(1) and methyl 2-ethyl-3-hydroxy-4-oxo-3,4-dihydro-2Hbenzo[e][1,2]thiazine-3-carboxylate 1,1-dioxid...1,2-Benzothiazine derivatives methyl 3-methoxy-4-oxo-3,4-dihydro-2H-benzo[e] [1,2]thiazine-3-carboxylate 1,1-dioxide(1) and methyl 2-ethyl-3-hydroxy-4-oxo-3,4-dihydro-2Hbenzo[e][1,2]thiazine-3-carboxylate 1,1-dioxide(2) were synthesized, and characterized by spectroscopic techniques; 1H-NMR and infrared(IR) spectroscopy. Crystals of 1 and 2 were grown by slow evaporation of methanol and ethyl acetate, respectively and their crystal structures were investigated by single-crystal X-ray diffraction analysis. Geometric properties were calculated by the B3 LYP method of density functional theory(DFT) at the 6-31G+(d) basis set to compare with the experimental data. Simulated properties were found in strong agreement with the experimental ones. Intermolecular forces have also been modeled in order to investigate the strength of packing and strong hydrogen bonding was observed in both compounds 1 and 2. Electronic properties such as Ionization Potential(IP), Electron Affinities(EA) and coefficients of the highest occupied molecular orbital(HOMO) and the lowest unoccupied molecular orbital(LUMO) of com- pounds 1 and 2 were simulated for the first time.展开更多
基金supported by Fund of National Science & Technology monumental projects under Grants No. 2012ZX03005012, 2011ZX03005-004-03, 2009ZX03003-007
文摘Non-stationary time series could be divided into piecewise stationary stochastic signal. However, the number and locations of breakpoints, as well as the approximation function of the respective segment signal are unknown. To solve this problem, a novel on-line structural breaks estimation algorithm based on piecewise autoregressive processes is proposed. In order to find the "best" combination of the number, lengths, and orders of the piecewise autoregressive (AR) processes, the Akaikes Information Criterion (AIC) and Yule-Walker equations are applied to estimate an AR model fit to the data. Numerical results demonstrate that the proposed estimation algorithm is suitable for different data series. Furthermore, the algorithm is used in a clinical study of electroencephalogram (EEG) with satisfactory results, and the ability to deal with real-time data is the most outstanding characteristic of on-line structural breaks estimation algorithm proposed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61564002 and 11664005)the Guizhou Normal University Innovation and Entrepreneurship Education Research Center Foundation(Grant No.0418010)the Joint Foundation of Guizhou Normal University(Grant No.7341)
文摘Using first-principle calculations, we investigate the mechanical, structural, and electronic properties and formation energy of 25 kinds of Ⅲ–V binary monolayers in detail. A relative radius of the binary compound according to the atomic number in the periodic table is defined, and based on the definition, the 25 kinds of Ⅲ–V binary compounds are exactly located at a symmetric position in a symmetric matrix. The mechanical properties and band gaps are found to be very dependent on relative radius, while the effective mass of holes and electrons are found to be less dependent. A linear function between Young’s modulus and formation energy is fitted with a linear relation in this paper. The change regularity of physical properties of B–V(V = P, As, Sb, Bi) and Ⅲ–N(Ⅲ = Al, Ga, In, Tl) are found to be very different from those of other Ⅲ–V binary compounds.
基金supported by the Program of National Natural Science Foundation of China (No. 31971650)the Key Project of National Key Research and Development Plan (No. 2017YFC0504104)Beijing Forestry University Outstanding Young Talent Cultivation Project(No. 2019JQ03001)
文摘Background:Assessing functional diversity to identify its spatial patterns and drivers is an important step towards understanding the adaptive capacity of ecosystems to environmental change. However, until now, these mechanisms were poorly understood in the temperate forests of northeastern China, which prevented the development of new management methods aimed at increasing functional trait diversity and thus ecological resilience.Methods:In this study, we mapped functional diversity distributions using a Kriging Interpolation Method. A specific random forest model approach was adopted to test the importance ranking of 18 variables in explaining the spatial variation of functional diversity. Three piecewise structural equation models (pSEMs) with forest types as random effects were constructed for testing the direct effects of climate, and the indirect effects of stand structure on functional diversity across the large study region. Specific causal relationships in each forest type were also examined using 15 linear structural equation models.Results:Although environmental filtering by climate is important, stand structure explains most of the functional variation of the forest ecosystems in northeastern China. Our study thus only partially supports the stressdominance hypothesis. Several abundant species determine most of the functional diversity, which supports the mass ratio hypothesis.Conclusions:Our results suggest that forest management aimed at increasing structural complexity can contribute to increased functional diversity, especially regarding the mixing of coniferous and broad-leaved tree species.
基金supported by the National Natural Science Foundation of China(11072247,11021262,and 11232011)National Natural Science Associate Foundation of China(NSAF)(U1230126)973 program of China(2013CB834100)
文摘A multifractal model is developed to connect the Lagrangian multifractal dimensions with their Eulerian counterparts. We propose that the characteristic time scale of a Lagrangian quantity should be the Lagrangian time scale, and it should not be the Eulerian time scale which was widely used in previous studies on Lagrangian statistics. Using the present model, we can obtain the scaling exponents of Lagrangian velocity structure functions from the existing data or models of scaling exponents of Eulerian velocity structure functions. This model is validated by comparing its prediction with the results of experiments, direct numerical simulations, and the previous theoretical models. The comparison shows that the proposed model can better predict the scaling exponents of Lagrangian velocity structure functions, especially for orders larger than 6.
基金The project supported by State Key Laboratory of Structural Analyses of Industrial Equipment
文摘A concept of the independent-continuous topological variable is proposed to establish its corresponding smooth model of structural topological optimization. The method can overcome difficulties that are encountered in conventional models and algorithms for the optimization of the structural topology. Its application to truss topological optimization with stress and displacement constraints is satisfactory, with convergence faster than that of sectional optimizations.
基金supported by the National Natural Science Foundation of China(Nos.11572025,11202013,and 51420105008)
文摘Closure models started from Chou's work have been developed for more than 70 years, aiming at providing analytical tools to describe turbulent flows in the spectral space. In this study, a preliminary attempt is presented to introduce a closure model in the physical space, using the velocity structure functions as key parameters. The present closure model appears to qualitatively reproduce the asymptotic scaling behav- iors at small and large scales, despite some inappropriate behaviors such as oscillations. Therefore, further improvements of the present model are expected to provide appropriate descriptions of turbulent flows in the physical space.
文摘Based on a simple nonrelativistic constituent quark model, the nucleon structure function F<SUB>2</SUB> in the resonance region is estimated by taking the contributions from low-lying nucleon resonances into account. Calculated results are employed to study quark-hardon duality in the nucleon electron scattering process by comparing them to the scaling behavior from the data in deep inelastic scattering region.
基金Project(07JJ3102)supported by the Natural Science Foundation of Hunan Province,ChinaProject(k0902132-11)supported by the Changsha Municipal Science and Technology,China
文摘The equilibrium lattice parameters, electronic structure, bulk modulus, Debye temperature, heat capacity and Gibbs energy of TiB and TiB2 were investigated using the pseudopotential plane-wave method based on density functional theory (DFT) and the improved quasi-harmonic Debye method. The results show that the total density of states (DOS) of TiB2 is mainly provided by the orbit hybridization of Ti-3d and B-2p states, and the total DOS of TiB is mainly provided by the hybrids bond of Ti-3d and B-2p below the Fermi level and Ti—Ti bond up to the Fermi level. The Ti—B hybrid bond in TiB2 is stronger than that in TiB. Finally, the enthalpy of formation at 0 K, heat capacity and Gibbs free energy of formation at various temperatures were determined. The calculated results are in excellent agreement with the available experimental data.
文摘Background: Pregnancy associated glycoproteins form a diverse family of glycoproteins that are variably expressed at different stages of gestation. They are probably involved in immunosuppression of the dam against the fetomaternal placentome. The presence of the products of binucleate cells in maternal circulation has also been correlated with placentogenesis and placental re-modeling. The exact structure and function of the gene product is unknown due to limitations on obtaining purified pregnancy associated glycoprotein preparations.Results: Our study describes an in silico derived 3D model for bubaline pregnancy associated glycoprotein 2. Structure-activity features of the protein were characterized, and functional studies predict bubaline pregnancy associated glycoprotein 2 as an inducible, extra-cellular, non-essential, N-glycosylated, aspartic pro-endopeptidase that is involved in down-regulation of complement pathway and immunity during pregnancy. The protein is also predicted to be involved in nutritional processes, and apoptotic processes underlying fetal morphogenesis and remodeling of feto-maternal tissues.Conclusion: The structural and functional annotation of buPAG2 shall allow the designing of mutants and inhibitors for dissection of the exact physiological role of the protein.
基金supported by the National Natural Science Foundation of China(90716008)the National Basic Research Program of China(2009CB724100).
文摘Despite dedicated effort for many decades,statistical description of highly technologically important wall turbulence remains a great challenge.Current models are unfortunately incomplete,or empirical,or qualitative.After a review of the existing theories of wall turbulence,we present a new framework,called the structure ensemble dynamics (SED),which aims at integrating the turbulence dynamics into a quantitative description of the mean flow.The SED theory naturally evolves from a statistical physics understanding of non-equilibrium open systems,such as fluid turbulence, for which mean quantities are intimately coupled with the fluctuation dynamics.Starting from the ensemble-averaged Navier-Stokes(EANS) equations,the theory postulates the existence of a finite number of statistical states yielding a multi-layer picture for wall turbulence.Then,it uses order functions(ratios of terms in the mean momentum as well as energy equations) to characterize the states and transitions between states.Application of the SED analysis to an incompressible channel flow and a compressible turbulent boundary layer shows that the order functions successfully reveal the multi-layer structure for wall-bounded turbulence, which arises as a quantitative extension of the traditional view in terms of sub-layer,buffer layer,log layer and wake. Furthermore,an idea of using a set of hyperbolic functions for modeling transitions between layers is proposed for a quantitative model of order functions across the entire flow domain.We conclude that the SED provides a theoretical framework for expressing the yet-unknown effects of fluctuation structures on the mean quantities,and offers new methods to analyze experimental and simulation data.Combined with asymptotic analysis,it also offers a way to evaluate convergence of simulations.The SED approach successfully describes the dynamics at both momentum and energy levels, in contrast with all prevalent approaches describing the mean velocity profile only.Moreover,the SED theoretical framework is general,independent of the flow system to study, while the actual functional form of the order functions may vary from flow to flow.We assert that as the knowledge of order functions is accumulated and as more flows are analyzed, new principles(such as hierarchy,symmetry,group invariance,etc.) governing the role of turbulent structures in the mean flow properties will be clarified and a viable theory of turbulence might emerge.
基金supported by the National Key Research and Development Program of China(Grants No.2016YFC0401600 and 2017YFC0404906)the National Natural Science Foundation of China(Grants No.51769033 and 51779035)the Fundamental Research Funds for the Central Universities(Grants No.DUT17ZD205 and DUT19LK14)
文摘Structural health monitoring is important to ensuring the health and safety of dams.An inverse analysis method based on a novel hybrid fireworks algorithm (FWA) and the radial basis function (RBF) model is proposed to diagnose the health condition of concrete dams.The damage of concrete dams is diagnosed by identifying the elastic modulus of materials using the displacement changes at different reservoir water levels.FWA is a global optimization intelligent algorithm.The proposed hybrid algorithm combines the FWA with the pattern search algorithm, which has a high capability for local optimization.Examples of benchmark functions and pseudo-experiment examples of concrete dams illustrate that the hybrid FWA improves the convergence speed and robustness of the original algorithm.To address the time consumption problem, an RBF-based surrogate model was established to replace part of the finite element method in inverse analysis.Numerical examples of concrete dams illustrate that the use of an RBF-based surrogate model significantly reduces the computation time of inverse analysis with little influence on identification accuracy.The presented hybrid FWA combined with the RBF network can quickly and accurately determine the elastic modulus of materials, and then determine the health status of the concrete dam.
基金Acknowledgements The authors gratefully acknowledge the financial support from the State Key Research Development Program of China (Grant No. 2016YFC0600705), the National Natural Science Foundation of China (Grant Nos. 51674251, 51727807, 51374213), the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 51125017), the Fund for Creative Research and Development Group Program of Jiangsu Province (Grant No. 2014-27), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (Grant No. PAPD2014), and an open project sponsored by the State Key Labo- ratory for Geomechanics and Deep Underground Engineering (Grant SKLGDUE K1318) for their financial support.
文摘Soil-rock mixture (SRM) is a unique type of geomaterial characterized by a heterogeneous composition and a complicated structure. It is intractable for the continuum-based soil and rock mechanics theories to accurately characterize and predict the SRM's mechanical properties. This study reports a novel numerical method incorporating microfocus computed tomography and PFC3D codes to probe the deformation and failure processes of SRM. The three-dimensional (3D) PFC models that represent the SRM's complex structures were built. By simulating the entire failure process in PFC3D, the SRM's strength, elastic modulus and crack growth were obtained. The influence of rock ratios on the SRM's strength, deformation and failure processes, as well as its internal mesoscale mechanism, were analyzed. By comparing simulation results with experimental data, it was verified that the 3D PFC models were in good agreement with SRM's real structure and the SRM's compression process, deformation and failure patterns; its intrinsic mesomechanism can be effectively analyzed based on such 3D PFC models.
基金the Fundamental Research Funds of CAF(CAFYBB2017ZX002)Yunnan Basic Research Program(2019FB058).
文摘Background:The impacts of selective logging on ecosystem multifunctionality(EMF)remain largely unexplored.In this study,we analyzed the response of nine variables related to four ecosystem functions(i.e.nutrient cycling,soil carbon stocks,decomposition,and wood production)to five selective logging intensities in a Pinus yunnanensisdominated forest.We included a control group with no harvest to evaluate the potential shifts in EMF of the P.yunnanensis forests.We also assessed the relationship between above-and belowground biodiversity and EMF under these different selective logging intensities.Additionally,we evaluated the effects of biotic and abiotic factors on EMF using a structural equation modeling(SEM)approach.Results:Individual ecosystem functions(EFs)all had a significant positive correlation with selective logging intensity.Different EFs showed different patterns with the increase of selective logging intensity.We found that EMF tended to increase with logging intensity,and that EMF significantly improved when the stand was harvested at least twice.Both functional diversity and soil moisture had a significant positive correlation with EMF,but soil fungal operational taxonomic units(OTUs)had a significant negative correlation with EMF.Based on SEM,we found that selective logging improved EMF mainly by increasing functional diversity.Conclusion:Our study demonstrates that selective logging is a good management technique from an EMF perspective,and thus provide us with potential guidelines to improve forest management in P.yunnanensis forests in this region.The functional diversity is maximized through reasonable selective logging measures,so as to enhance EMF.
基金Supported by National Natural Science Foundation of China(Grant No.51375424)
文摘The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformation, it is necessary to consider the transverse periodic movement of stock in the rolling deformation area which is caused by the flexural deformation movement of roll system simul- taneously. Therefore, the displacement field of roll system and flow of metal in the deformation area is described by kinematic analysis in the dynamic system. Through intro- ducing the lateral displacement function of metal in the deformation area, the dynamic variation of per unit width rolling force can be determined at the same time. Then the coupling law caused by the co-effect of rigid movement and flexural deformation of the system structural elements is determined. Furthermore, a multi-parameter coupling dynamic model of the roll system and stock is established by the principle of virtual work. More explicitly, the cou- pled motion modal analysis was made for the roll system. Meanwhile, the analytical solutions for the flexural defor- mation movement's mode shape functions of rolls are discussed. In addition, the dynamic characteristic of the lateral flow of metal in the rolling deformation area has been analyzed at the same time. The establishment ofdynamic lateral displacement function of metal in the deformation area makes the foundation for analyzing the coupling law between roll system and rolling deformation area, and provides a theoretical basis for the realization of the dynamic shape control of steel strip.
基金support provided by CSIR New Delhi via project grant No.25 (0184)/10/EMR–II
文摘The present study focuses on the analysis of free vibrations of axisymmetric functionally graded hollow spheres. The material is assumed to be graded in radial di- rection with a simple power law. Matrix Frrbenious method of extended power series is employed to derive the analytical solutions for displacement, temperature, and stresses. The dispersion relations for the existence of various types of pos- sible modes of vibrations in the considered hollow sphere are derived in a compact form. In order to explore the character- istics of vibrations, the secular equations are further solved by using fixed point iteration numerical technique with the help of MATLAB software. The numerical results have been presented graphically for polymethyl methecrylate materials in respect of natural frequencies, frequency shift, inverse quality factor, displacement, temperature change, and radial stress.
基金support from Significant Project of Guangxi Scientific Foundation (2018GXNSFDA281010)National Natural Science Foundation of China (51461002)。
文摘The thermodynamic properties of Mg Ca Si and its mother phase Ca2 Si are comparatively investigated from ab initio calculations and quasi-harmonic Debye-Grüneisen model. At 0 K, Mg Ca Si is more thermodynamically stable. Under high temperature, the advantage of higher thermodynamically stability of Mg Ca Si is reduced, originating from the less negative entropy contribution because the thermodynamic entropy of Mg Ca Si increases more slowly with temperature and the entropy values are slightly smaller.With increasing temperature, the anti-softening ability for Mg Ca Si is slightly smaller due to the slightly faster decrease trend of bulk modulus than that of Ca2 Si, although the bulk modulus of Mg Ca Si is higher in the whole temperature range considered. The thermal expansion behaviors of both Mg Ca Si and Ca_(2)Si exhibit similar increase trend, although thermal expansion coefficient of MgCaSi is slightly lower and the increases is slightly slower at lower temperature. The isochoric heat capacity CVand isobaric heat capacity CPof MgCaSi and Ca_(2)Si rise nonlinearly with temperature, and both CVare close to the Dulong–Petit limit at high temperature due to the negligibly small electronic contribution. The Debye temperature of both phases decrease with increasing temperature, and the downtrend for Mg Ca Si is slightly faster.However, MgCaSi possess slightly higher Debye temperature, implying the stronger chemical bonds and higher thermal conductivity than the mother phase Ca_(2)Si. The Grüneisen parameter of MgCaSi and Ca_(2)Si increase slightly with temperature, the values of MgCaSi are slightly larger. The investigation of electronic structures shows that with substitution of partial Ca by Mg in Ca_(2)Si, the stronger MgASi,MgACa and SiASi covalent bonds are formed, and plays a very significant role for the structural stability and mechanical properties.
文摘Nanohairs, which can be found on the epidermis of Tokay gecko's toes, contribute to the adhesion by means of van der Waals force, capillary force, etc. This structure has inspired many researchers to fabricate the attachable nano-scale structures. However, the efficiency of artificial nano-scale structures is not reliable sufficiently. Moreover, the mechanical parameters related to the nano-hair attachment are not yet revealed qualitatively. The mechanical parameters which have influence on the ability of adhesive nano-hairs were investigated through numerical simulation in which only van der Waals force was considered. For the numerical analysis, finite element method was utilized and van der Waals force, assumed as 12-6 Lennard-Jones potential, was implemented as the body force term in the finite element formulation.
文摘In the last decade, functional-structural plant modelling (FSPM) has become a more widely accepted paradigm in crop and tree production, as 3D models for the most important crops have been proposed. Given the wider portfolio of available models, it is now appropriate to enter the next level in FSPM development, by introducing more efficient methods for model development. This includes the consideration of model reuse (by modularisafion), combination and comparison, and the enhancement of existing mod- els. To facilitate this process, standards for design and communication need to be defined and established. We present a first step towards an efficient and general, i.e., not speciesspecific FSPM, presently restricted to annual or bi-annual plants, but with the potential for extension and further generalization. Model structure is hierarchical and object-oriented, with plant organs being the base-level objects and plant individual and canopy the higher-level objects. Modules for the majority of physiological processes are incorporated, more than in other platforms that have a similar aim (e.g., photosynthesis, organ formation and growth). Simulation runs with several general parameter sets adopted from the literature show that the present prototype was able to reproduce a plausible output range for different crops (rapeseed, barley, etc.) in terms of both the dynamics and final values (at harvest time) of model state variables such as assimilate production, organ biomass, leaf area and architecture.
基金funded by the Saudi Basic Industries Corporation(SABIC) and the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,under grant no.(MS/15/396/1434)
文摘1,2-Benzothiazine derivatives methyl 3-methoxy-4-oxo-3,4-dihydro-2H-benzo[e] [1,2]thiazine-3-carboxylate 1,1-dioxide(1) and methyl 2-ethyl-3-hydroxy-4-oxo-3,4-dihydro-2Hbenzo[e][1,2]thiazine-3-carboxylate 1,1-dioxide(2) were synthesized, and characterized by spectroscopic techniques; 1H-NMR and infrared(IR) spectroscopy. Crystals of 1 and 2 were grown by slow evaporation of methanol and ethyl acetate, respectively and their crystal structures were investigated by single-crystal X-ray diffraction analysis. Geometric properties were calculated by the B3 LYP method of density functional theory(DFT) at the 6-31G+(d) basis set to compare with the experimental data. Simulated properties were found in strong agreement with the experimental ones. Intermolecular forces have also been modeled in order to investigate the strength of packing and strong hydrogen bonding was observed in both compounds 1 and 2. Electronic properties such as Ionization Potential(IP), Electron Affinities(EA) and coefficients of the highest occupied molecular orbital(HOMO) and the lowest unoccupied molecular orbital(LUMO) of com- pounds 1 and 2 were simulated for the first time.