Protonic ceramic fuel cells(PCFCs)have been attracting increasing attention because of their advances in high-efficiency power generation in an intermediate-temperature range,as compared to the high-temperature solid ...Protonic ceramic fuel cells(PCFCs)have been attracting increasing attention because of their advances in high-efficiency power generation in an intermediate-temperature range,as compared to the high-temperature solid oxide fuel cells(SOFCs).The greatest difference between PCFCs and SOFCs is the specific requirement of protonic(H+)conductivity at the PCFC cathode,in addition to the electronic(e^(-))and oxide-ion(O^(2-))conductivity.The development of a triple H^(+)/e^(-)/O^(2-)conductor for PCFC cathode is still challenging.Thus,the most-widely used cathode material is based on the mature e^(-)/O^(2-)conductor.However,this leads to insufficient triple phase boundary(TPB),i.e.,reaction area.Herein,an efficient strategy that uses a~100 nm-thick proton conductive functional layer(La_(0.5)Sr_(0.5)CoO_(3-δ),LSC55)in-between the typical La_(0.8)Sr_(0.2)CoO_(3-δ)cathode(a mature e-/O^(2-)conductor,LS C 82)and B aZr_(0.4)Ce_(0.4)Y_(0.1)Yb_(0.)1O_(3-δ)elec trolyte(11 mm in diameter,20μm in thickness)is proposed to significantly enhance the reaction area.Reasonably,the ohmic resistance and polarization resistance are both decreased by 47%and 62%,respectively,compared with that of PCFCs without the functional layer.The power density of the PCFC with such a functional layer can be raised by up to 2.24 times,superior to those described in previous reports.The enhanced PCFC performances are attributed to the well-built TPB and enhanced reaction area via the functional layer engineering strategy.展开更多
基金financially supported by China Post-doctoral Science Foundation(No.2022M710856)Guangzhou Postdoctoral Research Project(No.62104380)+2 种基金the Outstanding Youth Project of Natural Science Foundation of Guangdong Province(No.2022B1515020020)the Funding by Science and Technology Projects in Guangzhou(Nos.202206050003 and 202201010603)Guangdong Engineering Technology Research Center for Hydrogen Energy and Fuel Cells。
文摘Protonic ceramic fuel cells(PCFCs)have been attracting increasing attention because of their advances in high-efficiency power generation in an intermediate-temperature range,as compared to the high-temperature solid oxide fuel cells(SOFCs).The greatest difference between PCFCs and SOFCs is the specific requirement of protonic(H+)conductivity at the PCFC cathode,in addition to the electronic(e^(-))and oxide-ion(O^(2-))conductivity.The development of a triple H^(+)/e^(-)/O^(2-)conductor for PCFC cathode is still challenging.Thus,the most-widely used cathode material is based on the mature e^(-)/O^(2-)conductor.However,this leads to insufficient triple phase boundary(TPB),i.e.,reaction area.Herein,an efficient strategy that uses a~100 nm-thick proton conductive functional layer(La_(0.5)Sr_(0.5)CoO_(3-δ),LSC55)in-between the typical La_(0.8)Sr_(0.2)CoO_(3-δ)cathode(a mature e-/O^(2-)conductor,LS C 82)and B aZr_(0.4)Ce_(0.4)Y_(0.1)Yb_(0.)1O_(3-δ)elec trolyte(11 mm in diameter,20μm in thickness)is proposed to significantly enhance the reaction area.Reasonably,the ohmic resistance and polarization resistance are both decreased by 47%and 62%,respectively,compared with that of PCFCs without the functional layer.The power density of the PCFC with such a functional layer can be raised by up to 2.24 times,superior to those described in previous reports.The enhanced PCFC performances are attributed to the well-built TPB and enhanced reaction area via the functional layer engineering strategy.