Calculation of total energies of the electronic ground states of atoms forms the basis for the frozen-core pseudopotentials used in atomistic calculations of much larger scale. Reference values for these energies prov...Calculation of total energies of the electronic ground states of atoms forms the basis for the frozen-core pseudopotentials used in atomistic calculations of much larger scale. Reference values for these energies provide a benchmark for the validation of new software to calculate such potentials. In addition, basic atomic-scale electronic properties such as the (first) ionization energy provide a simple check on the approximation used in the calculation method. We present a comparison of the total energies and ionization energies of atoms Z = 1 - 92 calculated in density functional theory with several levels of exchange-correlation functional and the Hartree-Fock method, comparing ionization energies to experiment. We also investigate the role of relativistic treatment on these energies.展开更多
As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery...As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery fault diagnosis.The traditional signal processing methods,such as classical inference and weighted averaging algorithm usually lack dynamic adaptability that is easy for trends to cause the faults to be misjudged or left out.To enhance the measuring veracity and precision of vibration signal in rotary machine multi-sensor vibration signal fault diagnosis,a novel data level fusion approach is presented on the basis of correlation function analysis to fast determine the weighted value of multi-sensor vibration signals.The approach doesn't require knowing the prior information about sensors,and the weighted value of sensors can be confirmed depending on the correlation measure of real-time data tested in the data level fusion process.It gives greater weighted value to the greater correlation measure of sensor signals,and vice versa.The approach can effectively suppress large errors and even can still fuse data in the case of sensor failures because it takes full advantage of sensor's own-information to determine the weighted value.Moreover,it has good performance of anti-jamming due to the correlation measures between noise and effective signals are usually small.Through the simulation of typical signal collected from multi-sensors,the comparative analysis of dynamic adaptability and fault tolerance between the proposed approach and traditional weighted averaging approach is taken.Finally,the rotor dynamics and integrated fault simulator is taken as an example to verify the feasibility and advantages of the proposed approach,it is shown that the multi-sensor data level fusion based on correlation function weighted approach is better than the traditional weighted average approach with respect to fusion precision and dynamic adaptability.Meantime,the approach is adaptable and easy to use,can be applied to other areas of vibration measurement.展开更多
Using the linear approximation method, we have studied how the correlation function C(t) of the laser intensity changes with time in the loss-noise model of the single-mode laser driven by the colored pump noise wit...Using the linear approximation method, we have studied how the correlation function C(t) of the laser intensity changes with time in the loss-noise model of the single-mode laser driven by the colored pump noise with signal modulation and the quantum noise with cross-correlation between the real and imaginary parts. We have found that when the pump noise self-correlation time T changes, (i) in the case of r 〈〈 1, the C(t) vs. t curve experiences a changing process from the monotonous descending to monotonous rise, and finally to the appearance of a maximum; (ii) in the case of r 〉〉 1, the curve only exhibits periodically surging with descending envelope. When r 〈〈 i and T does not change, with the increase of the pump noise intensity P, the curve experiences a repeated changing process, that is, from the monotonous descending to the appearance of a maximum, then to monotonous rise, and finally to the appearance of a maximum again. With the increase of the quantum noise intensity O,, the curve experiences a changing process from the monotonous rise to the appearance of a maximum, and finally to the monotonous descending. The increase of the quantum noise with cross-correlation between the real and imaginary parts will lead to the fall of the whole curve, but not affect the form of the time evolution of C(t).展开更多
The compact spectrometer for heavy ion experiment(CSHINE)is under construction for the study of isospin chronology via the Hanbury Brown–Twiss(HBT)particle correlation function and the nuclear equation of state of as...The compact spectrometer for heavy ion experiment(CSHINE)is under construction for the study of isospin chronology via the Hanbury Brown–Twiss(HBT)particle correlation function and the nuclear equation of state of asymmetrical nuclear matter.The CSHINE consists of silicon strip detector(SSD)telescopes and large-area parallel-plate avalanche counters,which measure the light charged particles and fission fragments,respectively.In phase I,two SSD telescopes were used to observe 30 MeV/u 40Ar?197Au reactions.The results presented here demonstrate that hydrogen and helium were observed with high isotopic resolution,and the HBT correlation functions of light charged particles could be constructed from the obtained data.展开更多
Blind separation of source signals usually relies either on the condition of statistically independence or involving their higher-order cumulants. The model of two channels signal separation is considered. A criterion...Blind separation of source signals usually relies either on the condition of statistically independence or involving their higher-order cumulants. The model of two channels signal separation is considered. A criterion based on correlation functions is proposed. It is proved that the signals can be separated, using only the condition of noncorrelation. An algorithm is derived, which only involves the solution to quadric nonlinear equations.展开更多
Noise correlation function (NCF) was calculated using the data of the Beijing Capital-Area Telemetered Digital Seismograph Network from June 12 to September 12, 2005. Signal-to-noise ratio (SNR) is used to charact...Noise correlation function (NCF) was calculated using the data of the Beijing Capital-Area Telemetered Digital Seismograph Network from June 12 to September 12, 2005. Signal-to-noise ratio (SNR) is used to characterize the quality of NCF at each station pair. The SNR (in dB) is shown to be dependent on the separation distance R of the station pair via SNR= A -BlogR. 'Normalized average SNR' for all the station pairs can then be calculated, as represented by the value of SNR taking R = 250 km in the empirical SNR-R relation, to measure the overall quality of the NCF result. The 'normalized average SNR' of the NCF shows temporal variation and is apparently dependent on the root-mean-square (RMS) velocity of the microseism. The result obtained by this experiment provides clues to the explanation of the properties of NCF, such as the dominant mechanism underlying (diffuse wave fields or uncorrelated sources), and the dependence of SNR on the time length of recordings.展开更多
The warheads such as missiles and artillery shells have a certain speed of motion during the explosion.Therefore,it is more practical to study the explosion damage of ammunition under motion.The different speeds of th...The warheads such as missiles and artillery shells have a certain speed of motion during the explosion.Therefore,it is more practical to study the explosion damage of ammunition under motion.The different speeds of the projectiles have a certain influence on the temperature field generated by the explosion.In this paper,AUTODYN is used to simulate the process of projectile dynamic explosion.In the experiment,the TNT spherical bare charges with the TNT equivalent of 9.53kg and the projectile attack speed of 0,421,675,1020m/s were simulated in the infinite air domain.The temperature field temperature peaks and temperature decay laws at different charge rates and the multi-function regression fitting method were used to quantitatively study the functional relationship between the temperature and peak temperature correlation calculations of static and dynamic explosion temperature fields.The results show that the temperature distribution of the dynamic explosion temperature field is affected by the velocity of the charge,and the temperature distribution of the temperature field is different with the change of the charge velocity.Through the analysis and fitting of the simulation data,the temperature calculation formula of the static and dynamic explosion temperature field is obtained,which can better establish the relationship between the temperature peak of the static and dynamic explosion temperature field and various influencing factors,and use this function.Relational calculations can yield better results and meet the accuracy requirements of actual tests.展开更多
In this work we study the correlation function of the ground state of a two-dimensional fully frustrated Ising model as well as spin glass. The Pfaffian method is used to calculate free energy and entropy as well as t...In this work we study the correlation function of the ground state of a two-dimensional fully frustrated Ising model as well as spin glass. The Pfaffian method is used to calculate free energy and entropy as well as the correlation function. We estimate the exponent of spin correlation function for the fully frustrated model and spin glass. In this paper an overview of the latest results on the spin correlation function is presented.展开更多
A rate equation approach was presented for the exact computation of the three vertex degree correlations of the fixed act-size collaboration networks.Measurements of the three vertex degree correlations were based on ...A rate equation approach was presented for the exact computation of the three vertex degree correlations of the fixed act-size collaboration networks.Measurements of the three vertex degree correlations were based on a rate equation in the continuous degree and time approximation for the average degree of the nearest neighbors of vertices of degree k,with an appropriate boundary condition.The rate equation proposed can be generalized in more sophisticated growing network models,and also extended to deal with related correlation measurements.Finally,in order to check the theoretical prediction,a numerical example was solved to demonstrate the performance of the degree correlation function.展开更多
Using a universal relation between electron filling factor and ground state energy, this paper studies the dependence of correlation exponents on the electron filling factor of one-dimensional extended Hubbard model i...Using a universal relation between electron filling factor and ground state energy, this paper studies the dependence of correlation exponents on the electron filling factor of one-dimensional extended Hubbard model in a strong coupling regime, and demonstrates that in contrast to the usual Hubbard model (gc = 1/2), the dimensionless coupling strength parameter gc heavily depends on the electron filling, and it has a "particle-hole" symmetry about electron quarter filling point. As increasing the nearest neighbouring repulsive interaction, the single particle spectral weight is transferred from low energy to high energy regimes. Moreover, at electron quarter filling, there is a metal-Mott insulator transition at the strong coupling point gc = 1/4, and this transition is a continuous phase transition.展开更多
The Lieb-Liniger model is a prototypical integrable model and has been turned into the benchmark physics in theoretical and numerical investigations of low-dimensional quantum systems. In this note, we present various...The Lieb-Liniger model is a prototypical integrable model and has been turned into the benchmark physics in theoretical and numerical investigations of low-dimensional quantum systems. In this note, we present various methods for calculating local and nonlocal M-particle correlation functions, momentum distribution, and static structure factor. In particular, using the Bethe ansatz wave function of the strong coupling Lieb-Liniger model, we analytically calculate the two-point correlation function, the large moment tail of the momentum distribution, and the static structure factor of the model in terms of the fractional statistical parameter a = 1 - 2/γ, where γ, is the dimensionless interaction strength. We also discuss the Tan's adiabatic relation and other universal relations for the strongly repulsive Lieb-Liniger model in terms of the fractional statistical parameter.展开更多
By using the linear approximation method, the intensity correlation function is calculated for a single-mode laser modulated by a bias signal and driven by colored pump and quantum noises with colored cross-correlatio...By using the linear approximation method, the intensity correlation function is calculated for a single-mode laser modulated by a bias signal and driven by colored pump and quantum noises with colored cross-correlation. We found that, when the correlation time between the two noises is very short, the behavior of the intensity correlation function versus the time, in addition to decreasing monotonously, also exhibits several cases, such as one maximum, one minimum, and two extrema. When the correlation time between the two noises is very long, the behavior of the intensity correlation function exhibits oscillation and the envelope is similar to the case of short cross-correlation time.展开更多
The effects of time delay on the fluctuation properties of a bistable system are investigated by simulating its normalised correlation function C(s). Three cases including linear delay, cubic delay and global delay ...The effects of time delay on the fluctuation properties of a bistable system are investigated by simulating its normalised correlation function C(s). Three cases including linear delay, cubic delay and global delay in the system are considered respectively. The simulation results indicate that the linear delay enhances the fluctuation of the system (reduces the stability of the system) while the cubic delay and global delay weaken it (enforce the stability of the system), and the effect of cubic delay is more pronounced than the linear delay and global delay.展开更多
This paper investigates the two-time intensity correlation function of a two-mode ring laser system subjected to both pump and quantum noises by stochastic simulation. It finds that the decay rate of the intensity cor...This paper investigates the two-time intensity correlation function of a two-mode ring laser system subjected to both pump and quantum noises by stochastic simulation. It finds that the decay rate of the intensity correlation function of one mode gets faster with decreasing values of relevant parameters, i.e., the coupling constant ξ, the cross-correlation coefficient A, the difference of the pump parameters Aa and the pump parameter al; however, its variations get complex in the other mode when relevant parameters are changed. The investigating results also show that the effects of the mode competition on intensity correlation function are obvious.展开更多
The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method.We focus on the dynamical auto-correlation functions CO(ω), with the operator taken as σx, σz, and ...The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method.We focus on the dynamical auto-correlation functions CO(ω), with the operator taken as σx, σz, and X, respectively. In the weak-coupling regime α 〈 αc, these functions show power law ω-dependence in the small frequency limit, with the powers 1 + 2s, 1 + 2s, and s, respectively. At the critical point α = αc of the boson-unstable quantum phase transition, the critical exponents yO of these correlation functions are obtained as yσx= yσz= 1-2s and yX=-s, respectively. Here s is the bath index and X is the boson displacement operator. Close to the spin flip point, the high frequency peak of Cσx(ω) is broadened significantly and the line shape changes qualitatively, showing enhanced dephasing at the spin flip point.展开更多
This paper studies the effects of cross-correlations between the real and imaginary parts of quantum noise on the laser intensity in a saturation laser model. It derives the analytic expressions of the intensity corre...This paper studies the effects of cross-correlations between the real and imaginary parts of quantum noise on the laser intensity in a saturation laser model. It derives the analytic expressions of the intensity correlation function C(τ) and the associated relaxation time T(C) in the case of a stable locked phase resulting from the cross-correlation λq between the real and imaginary parts of quantum noise. Based on numerical computations it finds that the presence of cross correlations between the real and imaginary parts of quantum noise slow down the decay of intensity fluctuation, i.e., it causes the increase of intensity fluctuation.展开更多
We have considered two distant mesoscopic superconducting quantum interference device (SQUID) rings A and B in the presence of two-mode nonclassical state fields and investigated the correlation of the supercurrents...We have considered two distant mesoscopic superconducting quantum interference device (SQUID) rings A and B in the presence of two-mode nonclassical state fields and investigated the correlation of the supercurrents in the two rings using the normalized correlation function CAB. We show that when the parameter c~ is very small for the separable state with the density matrix ρ = {│α,-α) (α,-α│ + │-α, α) (-α, α│}/2 and entangled coherent state {(ECS) [u) = N1(│α, -α) + │-α, α)} fields, the dynamic behaviours of the normalized correlation function CAB are similar, but it is quite different for the entangled coherent state │u') = N2(│α,-α) - │-α, α)} field. When the parameter α is very large, the dynamic behaviours of CAB are almost the same for the separable state, entangled coherent state │u) and [u'〉 fields. For the two-mode squeezed vacuum state field the maximum of CAB increases monotonically with the squeezing parameter γ, and as γ→ ∞ , CAB→ 1. This means that the supercurrents in the two rings A and B are quantum mechanically correlated perfectly. It is concluded that not all the quantum correlations in the two-mode nonclassical state field can be transferred to the supercurrents; and the transfer depends on the state of the two-mode nonclassical state field prepared.展开更多
A theoretical method was proposed to extend a bridge density functional approximation (BDFA) for the non-uniform hard sphere fluid to the non-uniform Lennard-Jones (LJ) fluid. The DFT approach for LJ fluid is simp...A theoretical method was proposed to extend a bridge density functional approximation (BDFA) for the non-uniform hard sphere fluid to the non-uniform Lennard-Jones (LJ) fluid. The DFT approach for LJ fluid is simple, quantitatively accurate in a wide range of coexistence phase and external field parameters. Especially, the DFT approach only needs a second order direct correlation function (DCF) of the coexistence bulk fluid as input, and is therefore applicable to the subcritical temperature region. The present theoretical method can be regarded as a non-uniform counterpart of the thermodynamic perturbation theory, in which it is not at the level of the free energy but at the level of the second order DCF.the National Natural Science Foundation of China (No. 20546004) and the Natural Science Foundation of Education Department of Hunan Province (No.04C711).展开更多
The gl(1/1) supersymmetric vertex model with domain wall boundary conditions (DWBC) on an N × N square lattice is considered. We derive the reduction formulae for the one-point boundary correlation functions ...The gl(1/1) supersymmetric vertex model with domain wall boundary conditions (DWBC) on an N × N square lattice is considered. We derive the reduction formulae for the one-point boundary correlation functions of the model. The determinant representation for the boundary correlation functions is also obtained.展开更多
Based on a class of bipolar sequences with two-values autocorrelation functions, a new family of bipolar sequences is constructed and its correlation spectrum is calculated. It is shown that the new family is optimal ...Based on a class of bipolar sequences with two-values autocorrelation functions, a new family of bipolar sequences is constructed and its correlation spectrum is calculated. It is shown that the new family is optimal with respect to Welch's bound and is different from the small set of Kasami sequences, while both of them have the same correlation properties.展开更多
文摘Calculation of total energies of the electronic ground states of atoms forms the basis for the frozen-core pseudopotentials used in atomistic calculations of much larger scale. Reference values for these energies provide a benchmark for the validation of new software to calculate such potentials. In addition, basic atomic-scale electronic properties such as the (first) ionization energy provide a simple check on the approximation used in the calculation method. We present a comparison of the total energies and ionization energies of atoms Z = 1 - 92 calculated in density functional theory with several levels of exchange-correlation functional and the Hartree-Fock method, comparing ionization energies to experiment. We also investigate the role of relativistic treatment on these energies.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2007AA04Z433)Hunan Provincial Natural Science Foundation of China (Grant No. 09JJ8005)Scientific Research Foundation of Graduate School of Beijing University of Chemical and Technology,China (Grant No. 10Me002)
文摘As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery fault diagnosis.The traditional signal processing methods,such as classical inference and weighted averaging algorithm usually lack dynamic adaptability that is easy for trends to cause the faults to be misjudged or left out.To enhance the measuring veracity and precision of vibration signal in rotary machine multi-sensor vibration signal fault diagnosis,a novel data level fusion approach is presented on the basis of correlation function analysis to fast determine the weighted value of multi-sensor vibration signals.The approach doesn't require knowing the prior information about sensors,and the weighted value of sensors can be confirmed depending on the correlation measure of real-time data tested in the data level fusion process.It gives greater weighted value to the greater correlation measure of sensor signals,and vice versa.The approach can effectively suppress large errors and even can still fuse data in the case of sensor failures because it takes full advantage of sensor's own-information to determine the weighted value.Moreover,it has good performance of anti-jamming due to the correlation measures between noise and effective signals are usually small.Through the simulation of typical signal collected from multi-sensors,the comparative analysis of dynamic adaptability and fault tolerance between the proposed approach and traditional weighted averaging approach is taken.Finally,the rotor dynamics and integrated fault simulator is taken as an example to verify the feasibility and advantages of the proposed approach,it is shown that the multi-sensor data level fusion based on correlation function weighted approach is better than the traditional weighted average approach with respect to fusion precision and dynamic adaptability.Meantime,the approach is adaptable and easy to use,can be applied to other areas of vibration measurement.
文摘Using the linear approximation method, we have studied how the correlation function C(t) of the laser intensity changes with time in the loss-noise model of the single-mode laser driven by the colored pump noise with signal modulation and the quantum noise with cross-correlation between the real and imaginary parts. We have found that when the pump noise self-correlation time T changes, (i) in the case of r 〈〈 1, the C(t) vs. t curve experiences a changing process from the monotonous descending to monotonous rise, and finally to the appearance of a maximum; (ii) in the case of r 〉〉 1, the curve only exhibits periodically surging with descending envelope. When r 〈〈 i and T does not change, with the increase of the pump noise intensity P, the curve experiences a repeated changing process, that is, from the monotonous descending to the appearance of a maximum, then to monotonous rise, and finally to the appearance of a maximum again. With the increase of the quantum noise intensity O,, the curve experiences a changing process from the monotonous rise to the appearance of a maximum, and finally to the monotonous descending. The increase of the quantum noise with cross-correlation between the real and imaginary parts will lead to the fall of the whole curve, but not affect the form of the time evolution of C(t).
基金This work was supported by the National Natural Science Foundation of China(Nos.11875174 and 11961131010)。
文摘The compact spectrometer for heavy ion experiment(CSHINE)is under construction for the study of isospin chronology via the Hanbury Brown–Twiss(HBT)particle correlation function and the nuclear equation of state of asymmetrical nuclear matter.The CSHINE consists of silicon strip detector(SSD)telescopes and large-area parallel-plate avalanche counters,which measure the light charged particles and fission fragments,respectively.In phase I,two SSD telescopes were used to observe 30 MeV/u 40Ar?197Au reactions.The results presented here demonstrate that hydrogen and helium were observed with high isotopic resolution,and the HBT correlation functions of light charged particles could be constructed from the obtained data.
文摘Blind separation of source signals usually relies either on the condition of statistically independence or involving their higher-order cumulants. The model of two channels signal separation is considered. A criterion based on correlation functions is proposed. It is proved that the signals can be separated, using only the condition of noncorrelation. An algorithm is derived, which only involves the solution to quadric nonlinear equations.
基金supported by the Fundamental Research and Development of Institute of Geophysics,China Earthquake Administration (DQJB07B03)
文摘Noise correlation function (NCF) was calculated using the data of the Beijing Capital-Area Telemetered Digital Seismograph Network from June 12 to September 12, 2005. Signal-to-noise ratio (SNR) is used to characterize the quality of NCF at each station pair. The SNR (in dB) is shown to be dependent on the separation distance R of the station pair via SNR= A -BlogR. 'Normalized average SNR' for all the station pairs can then be calculated, as represented by the value of SNR taking R = 250 km in the empirical SNR-R relation, to measure the overall quality of the NCF result. The 'normalized average SNR' of the NCF shows temporal variation and is apparently dependent on the root-mean-square (RMS) velocity of the microseism. The result obtained by this experiment provides clues to the explanation of the properties of NCF, such as the dominant mechanism underlying (diffuse wave fields or uncorrelated sources), and the dependence of SNR on the time length of recordings.
文摘The warheads such as missiles and artillery shells have a certain speed of motion during the explosion.Therefore,it is more practical to study the explosion damage of ammunition under motion.The different speeds of the projectiles have a certain influence on the temperature field generated by the explosion.In this paper,AUTODYN is used to simulate the process of projectile dynamic explosion.In the experiment,the TNT spherical bare charges with the TNT equivalent of 9.53kg and the projectile attack speed of 0,421,675,1020m/s were simulated in the infinite air domain.The temperature field temperature peaks and temperature decay laws at different charge rates and the multi-function regression fitting method were used to quantitatively study the functional relationship between the temperature and peak temperature correlation calculations of static and dynamic explosion temperature fields.The results show that the temperature distribution of the dynamic explosion temperature field is affected by the velocity of the charge,and the temperature distribution of the temperature field is different with the change of the charge velocity.Through the analysis and fitting of the simulation data,the temperature calculation formula of the static and dynamic explosion temperature field is obtained,which can better establish the relationship between the temperature peak of the static and dynamic explosion temperature field and various influencing factors,and use this function.Relational calculations can yield better results and meet the accuracy requirements of actual tests.
基金supported by the Department of Mathematics,Faculty of Science,Mahidol University,Thailand
文摘In this work we study the correlation function of the ground state of a two-dimensional fully frustrated Ising model as well as spin glass. The Pfaffian method is used to calculate free energy and entropy as well as the correlation function. We estimate the exponent of spin correlation function for the fully frustrated model and spin glass. In this paper an overview of the latest results on the spin correlation function is presented.
基金Project(20090162110058) supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(KJ101210) supported by the Foundation of Chongqing Municipal Education Committee,China Project(2009GK3010) supported by the Hunan Science & Technology Foundation,China
文摘A rate equation approach was presented for the exact computation of the three vertex degree correlations of the fixed act-size collaboration networks.Measurements of the three vertex degree correlations were based on a rate equation in the continuous degree and time approximation for the average degree of the nearest neighbors of vertices of degree k,with an appropriate boundary condition.The rate equation proposed can be generalized in more sophisticated growing network models,and also extended to deal with related correlation measurements.Finally,in order to check the theoretical prediction,a numerical example was solved to demonstrate the performance of the degree correlation function.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10774152)the Natural Science Foundation of Zhejiang Province of China (Grant No. Y1100088)the Founding of Zhejiang Ocean University
文摘Using a universal relation between electron filling factor and ground state energy, this paper studies the dependence of correlation exponents on the electron filling factor of one-dimensional extended Hubbard model in a strong coupling regime, and demonstrates that in contrast to the usual Hubbard model (gc = 1/2), the dimensionless coupling strength parameter gc heavily depends on the electron filling, and it has a "particle-hole" symmetry about electron quarter filling point. As increasing the nearest neighbouring repulsive interaction, the single particle spectral weight is transferred from low energy to high energy regimes. Moreover, at electron quarter filling, there is a metal-Mott insulator transition at the strong coupling point gc = 1/4, and this transition is a continuous phase transition.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374331 and 11534014)the National Key R&D Program of China(Grant No.2017YFA0304500)partially supported by CAS-TWAS President’s Fellowship for International PhD Students
文摘The Lieb-Liniger model is a prototypical integrable model and has been turned into the benchmark physics in theoretical and numerical investigations of low-dimensional quantum systems. In this note, we present various methods for calculating local and nonlocal M-particle correlation functions, momentum distribution, and static structure factor. In particular, using the Bethe ansatz wave function of the strong coupling Lieb-Liniger model, we analytically calculate the two-point correlation function, the large moment tail of the momentum distribution, and the static structure factor of the model in terms of the fractional statistical parameter a = 1 - 2/γ, where γ, is the dimensionless interaction strength. We also discuss the Tan's adiabatic relation and other universal relations for the strongly repulsive Lieb-Liniger model in terms of the fractional statistical parameter.
文摘By using the linear approximation method, the intensity correlation function is calculated for a single-mode laser modulated by a bias signal and driven by colored pump and quantum noises with colored cross-correlation. We found that, when the correlation time between the two noises is very short, the behavior of the intensity correlation function versus the time, in addition to decreasing monotonously, also exhibits several cases, such as one maximum, one minimum, and two extrema. When the correlation time between the two noises is very long, the behavior of the intensity correlation function exhibits oscillation and the envelope is similar to the case of short cross-correlation time.
基金Project supported by the National Natural Science Foundation of China(Grant No.10865006)the Science Foundation of Yunnan University(Grant No.2009A01z)the Graduate Science Foundation of Yunnan University(Grant No.ynuy200926)
文摘The effects of time delay on the fluctuation properties of a bistable system are investigated by simulating its normalised correlation function C(s). Three cases including linear delay, cubic delay and global delay in the system are considered respectively. The simulation results indicate that the linear delay enhances the fluctuation of the system (reduces the stability of the system) while the cubic delay and global delay weaken it (enforce the stability of the system), and the effect of cubic delay is more pronounced than the linear delay and global delay.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10865006)the Natural Science Foundation of Yunnan Province of China (Grant No. 2005A0002M)
文摘This paper investigates the two-time intensity correlation function of a two-mode ring laser system subjected to both pump and quantum noises by stochastic simulation. It finds that the decay rate of the intensity correlation function of one mode gets faster with decreasing values of relevant parameters, i.e., the coupling constant ξ, the cross-correlation coefficient A, the difference of the pump parameters Aa and the pump parameter al; however, its variations get complex in the other mode when relevant parameters are changed. The investigating results also show that the effects of the mode competition on intensity correlation function are obvious.
基金supported by the National Key Basic Research Program of China(Grant No.2012CB921704)the National Natural Science Foundation of China(Grant No.11374362)+1 种基金the Fundamental Research Funds for the Central Universities,Chinathe Research Funds of Renmin University of China(Grant No.15XNLQ03)
文摘The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method.We focus on the dynamical auto-correlation functions CO(ω), with the operator taken as σx, σz, and X, respectively. In the weak-coupling regime α 〈 αc, these functions show power law ω-dependence in the small frequency limit, with the powers 1 + 2s, 1 + 2s, and s, respectively. At the critical point α = αc of the boson-unstable quantum phase transition, the critical exponents yO of these correlation functions are obtained as yσx= yσz= 1-2s and yX=-s, respectively. Here s is the bath index and X is the boson displacement operator. Close to the spin flip point, the high frequency peak of Cσx(ω) is broadened significantly and the line shape changes qualitatively, showing enhanced dephasing at the spin flip point.
基金Project supported by the Natural Science Foundation of Yunnan Province, China (Grant No 2006A0002M)
文摘This paper studies the effects of cross-correlations between the real and imaginary parts of quantum noise on the laser intensity in a saturation laser model. It derives the analytic expressions of the intensity correlation function C(τ) and the associated relaxation time T(C) in the case of a stable locked phase resulting from the cross-correlation λq between the real and imaginary parts of quantum noise. Based on numerical computations it finds that the presence of cross correlations between the real and imaginary parts of quantum noise slow down the decay of intensity fluctuation, i.e., it causes the increase of intensity fluctuation.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374007).
文摘We have considered two distant mesoscopic superconducting quantum interference device (SQUID) rings A and B in the presence of two-mode nonclassical state fields and investigated the correlation of the supercurrents in the two rings using the normalized correlation function CAB. We show that when the parameter c~ is very small for the separable state with the density matrix ρ = {│α,-α) (α,-α│ + │-α, α) (-α, α│}/2 and entangled coherent state {(ECS) [u) = N1(│α, -α) + │-α, α)} fields, the dynamic behaviours of the normalized correlation function CAB are similar, but it is quite different for the entangled coherent state │u') = N2(│α,-α) - │-α, α)} field. When the parameter α is very large, the dynamic behaviours of CAB are almost the same for the separable state, entangled coherent state │u) and [u'〉 fields. For the two-mode squeezed vacuum state field the maximum of CAB increases monotonically with the squeezing parameter γ, and as γ→ ∞ , CAB→ 1. This means that the supercurrents in the two rings A and B are quantum mechanically correlated perfectly. It is concluded that not all the quantum correlations in the two-mode nonclassical state field can be transferred to the supercurrents; and the transfer depends on the state of the two-mode nonclassical state field prepared.
文摘A theoretical method was proposed to extend a bridge density functional approximation (BDFA) for the non-uniform hard sphere fluid to the non-uniform Lennard-Jones (LJ) fluid. The DFT approach for LJ fluid is simple, quantitatively accurate in a wide range of coexistence phase and external field parameters. Especially, the DFT approach only needs a second order direct correlation function (DCF) of the coexistence bulk fluid as input, and is therefore applicable to the subcritical temperature region. The present theoretical method can be regarded as a non-uniform counterpart of the thermodynamic perturbation theory, in which it is not at the level of the free energy but at the level of the second order DCF.the National Natural Science Foundation of China (No. 20546004) and the Natural Science Foundation of Education Department of Hunan Province (No.04C711).
基金National Natural Science Foundation of China under Grant No.90403019
文摘The gl(1/1) supersymmetric vertex model with domain wall boundary conditions (DWBC) on an N × N square lattice is considered. We derive the reduction formulae for the one-point boundary correlation functions of the model. The determinant representation for the boundary correlation functions is also obtained.
文摘Based on a class of bipolar sequences with two-values autocorrelation functions, a new family of bipolar sequences is constructed and its correlation spectrum is calculated. It is shown that the new family is optimal with respect to Welch's bound and is different from the small set of Kasami sequences, while both of them have the same correlation properties.