Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying som...Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying some mild assumptions.Let HX,L(ℝ^(n))be the Hardy space associated with both X and L,which is defined by the Lusin area function related to the semigroup generated by L.In this article,the authors establish various maximal function characterizations of the Hardy space HX,L(ℝ^(n))and then apply these characterizations to obtain the solvability of the related Cauchy problem.These results have a wide range of generality and,in particular,the specific spaces X to which these results can be applied include the weighted space,the variable space,the mixed-norm space,the Orlicz space,the Orlicz-slice space,and the Morrey space.Moreover,the obtained maximal function characterizations of the mixed-norm Hardy space,the Orlicz-slice Hardy space,and the Morrey-Hardy space associated with L are completely new.展开更多
Let L be the infinitesimal generator of an analytic semigroup on L 2 (Rn)with Gaussian kernel bounds,and L-α/ 2 be the fractional integrals generated by L for 0< α<n.Let Tj,1 be the singular integral with nons...Let L be the infinitesimal generator of an analytic semigroup on L 2 (Rn)with Gaussian kernel bounds,and L-α/ 2 be the fractional integrals generated by L for 0< α<n.Let Tj,1 be the singular integral with nonsmooth kernel related to L,or Tj,1=I, Tj,2,Tj,4 be the linear operators,which are bounded on Lp(Rn)for 1<p<∞,and Tj,3=±I(j=1,2,···,m),where I is the identity operator.For b∈L 1 loc (Rn),denote the Toeplitz-type operator byΘαbfmj=1(Tj,1MbIαTj,2 + Tj,3MbIαTj,4),where Mb is a multiplication ope...展开更多
The dynamics, stability and control problem of a kind of infinite dimensional system are studied in the functional space with the method of modern Mathematics. First, the dynamical control model of the distributed par...The dynamics, stability and control problem of a kind of infinite dimensional system are studied in the functional space with the method of modern Mathematics. First, the dynamical control model of the distributed parameter system with multi-body flexible and multi-topological structure was established which has damping, gyroscopic parts and constrained damping. Secondly, the necessary and sufficient condition of controllability and observability, the stability theory and asymptotic property of the system were obtained. These results expand the theory of the field about the dynamics and control of the system with multi-body flexible structure, and have important engineering significance.展开更多
We introduce the martingale Morrey spaces built on Banach function spaces. We establish the Doob's inequality, the Burkholder-Gundy inequality and the boundedness of martingale transforms for our martingale Morrey sp...We introduce the martingale Morrey spaces built on Banach function spaces. We establish the Doob's inequality, the Burkholder-Gundy inequality and the boundedness of martingale transforms for our martingale Morrey spaces. We also introduce the martingale block spaces. By the Doob's inequality on martingale block spaces, we obtain the Davis' decompositions for martingale Morrey spaces.展开更多
A new maximal function is introduced in the dual spaces of test function spaces on spaces of homogeneous type. Using this maximal function, we get new characterization of atomic H^p spaces.
Let Mφ be the operator of multiplication by φ on a Hilbert space of functions analytic on the open unit disk. For an invariant subspace F for the multiplication operator Mz, we derive some spectral properties of the...Let Mφ be the operator of multiplication by φ on a Hilbert space of functions analytic on the open unit disk. For an invariant subspace F for the multiplication operator Mz, we derive some spectral properties of the multiplication operator Mφ : F→F. We characterize norm, spectrum, essential norm and essential spectrum of such operators when F has the codimension n property with n∈{1,2,...,+∞}.展开更多
This article derives the relation between universal interpolating sequences and some spectral properties of the multiplication operator by the independent variable z in case the underlying space is a Hilbert space of ...This article derives the relation between universal interpolating sequences and some spectral properties of the multiplication operator by the independent variable z in case the underlying space is a Hilbert space of functions analytic on the open unit disk.展开更多
In this paper we Ointroduce linear-spaces consisting of continuous functions whose graphs are the attactars of a special class of iterated function systems. We show that such spaces are finite dimensional and give the...In this paper we Ointroduce linear-spaces consisting of continuous functions whose graphs are the attactars of a special class of iterated function systems. We show that such spaces are finite dimensional and give the bases of these spaces in an implicit way. Given such a space, we discuss how to obtain a set of knots for whah the Lagrange interpolation problem by the space is uniquely solvable.展开更多
We consider the space X of all analytic functionsof two complex variables s1 and s2, equipping it with the natural locally convex topology and using the growth parameter, the order of f as defined recently by the auth...We consider the space X of all analytic functionsof two complex variables s1 and s2, equipping it with the natural locally convex topology and using the growth parameter, the order of f as defined recently by the authors. Under this topology X becomes a Frechet space Apart from finding the characterization of continuous linear functionals, linear transformation on X, we have obtained the necessary and sufficient conditions for a double sequence in X to be a proper bases.展开更多
This paper investigates sober spaces and their related structures from different perspectives.First,we extend the descriptive set theory of second countable sober spaces to first countable sober spaces.We prove that a...This paper investigates sober spaces and their related structures from different perspectives.First,we extend the descriptive set theory of second countable sober spaces to first countable sober spaces.We prove that a first countable T_(0) space is sober if and only if it does not contain a∏_(2)^(0)-subspace homeomorphic either to S_(D),the natural number set equipped with the Scott topology,or to S_(1),the natural number set equipped with the cofinite topology,and it does not contain any directed closed subset without maximal elements either.Second,we show that if Y is sober,the function space TOP(X,Y)equipped with the Isbell topology(respectively,Scott topology)may be a non-sober space.Furthermore,we provide a uniform construction to d-spaces and well-filtered spaces via irreducible subset systems introduced in[9];we called this an H-well-filtered space.We obtain that,for a T_(0) space X and an H-well-filtered space Y,the function space TOP(X,Y)equipped with the Isbell topology is H-well-filtered.Going beyond the aforementioned work,we solve several open problems concerning strong d-spaces posed by Xu and Zhao in[11].展开更多
We consider a Prandtl model derived from MHD in the Prandtl-Hartmann regime that has a damping term due to the effect of the Hartmann boundary layer.A global-in-time well-posedness is obtained in the Gevrey function s...We consider a Prandtl model derived from MHD in the Prandtl-Hartmann regime that has a damping term due to the effect of the Hartmann boundary layer.A global-in-time well-posedness is obtained in the Gevrey function space with the optimal index 2.The proof is based on a cancellation mechanism through some auxiliary functions from the study of the Prandtl equation and an observation about the structure of the loss of one order tangential derivatives through twice operations of the Prandtl operator.展开更多
Let Ω be a domain in C^(n) and let Y be a function space on Ω.If a∈Ω and g∈Y with g(a)=0,do there exist functions f_(1),f_(2),…,f_(n)∈Y such that g(z)=∑_(l=1)^(n)(z_(l)−a_(l))f_(l)(z)for all z=(z_(1),z_(2),…,...Let Ω be a domain in C^(n) and let Y be a function space on Ω.If a∈Ω and g∈Y with g(a)=0,do there exist functions f_(1),f_(2),…,f_(n)∈Y such that g(z)=∑_(l=1)^(n)(z_(l)−a_(l))f_(l)(z)for all z=(z_(1),z_(2),…,z_(n))∈Ω?This is Gleason’s problem.In this paper,we prove that Gleason’s problem is solvable on the boundary general function space F^(p,q,s)(B)in the unit ball B of C^(n).展开更多
The aim of this paper is to prove a new version of the Riesz-Thorin interpolation theorem on L^(P)(C,H).In the sense of Cullen-regular,we show Hadamard’s three-lines theorem by means of the Maximum modulus principle ...The aim of this paper is to prove a new version of the Riesz-Thorin interpolation theorem on L^(P)(C,H).In the sense of Cullen-regular,we show Hadamard’s three-lines theorem by means of the Maximum modulus principle on a symmetric slice domain.In addition,two applications of the Riesz-Thorin theorem are presented.Finally,we investigate two kinds of Calderón’s complex interpolation methods in LP(C,H).展开更多
In this paper, a general function space X(B n ) over the unit ball in C n with norm · X(Bn) is introduced. It contains all Hardy space, Bergman space, Besov space etc. The author gives a formulation of a comp...In this paper, a general function space X(B n ) over the unit ball in C n with norm · X(Bn) is introduced. It contains all Hardy space, Bergman space, Besov space etc. The author gives a formulation of a compact composition operator on X(B n ), related to works of [8] and [10].展开更多
In this paper,we characterize the multipliers of generalized Bergman spaces A^p,q,α with 0<p≤1, 0<q, α<∞into some analytic function spaces and into sequence spaces,and show that the multipliers of A^p,q,...In this paper,we characterize the multipliers of generalized Bergman spaces A^p,q,α with 0<p≤1, 0<q, α<∞into some analytic function spaces and into sequence spaces,and show that the multipliers of A^p,q,α(0<p≤1,0<q, α<∞) into a given space are the same as those of A^p,α(0<p≤1, α>0) in almost every case considered. The corollaries on multipliers of the spaces A^p,q,α extend some related results.展开更多
We consider the space of rapidly decreasing sequences s and the derivative operator D defined on it. The object of this article is to study the equivalence of a differential operator of infinite order; that is φ(D)...We consider the space of rapidly decreasing sequences s and the derivative operator D defined on it. The object of this article is to study the equivalence of a differential operator of infinite order; that is φ(D) =^∞∑k=0φkD^k.φk constant numbers an a power of D.Dn, meaning, is there a isomorphism X (from s onto s) such that Xφ(D) = D^nX?. We prove that if φ(D) is equivalent to Dn, then φ(D) is of finite order, in fact a polynomial of degree n. The question of the equivalence of two differential operators of finite order in the space s is addressed too and solved completely when n = 1.展开更多
The Lipschitz class Lip(K, α) on a local field K is defined in [10], and an equivalent relationship between the Ho¨lder type space Cα(K)[9] and Lip(K,α) is given. In this note, we give a 'chain of function...The Lipschitz class Lip(K, α) on a local field K is defined in [10], and an equivalent relationship between the Ho¨lder type space Cα(K)[9] and Lip(K,α) is given. In this note, we give a 'chain of function spaces' over Euclidian space by defining higher order continuous modulus in R, and point out that there is no need of higher order continuous modulus for describing the chain of function spaces over local fields.展开更多
Using the method of undetermined coefficients, we construct a set of shape function spaces of nine-node triangular plate elements converging for any meshes, which generalize Spect's element and Veubeke's element.
基金supported by the National Key Research and Development Program of China(2020YFA0712900)the National Natural Science Foundation of China(12371093,12071197,12122102 and 12071431)+2 种基金the Key Project of Gansu Provincial National Science Foundation(23JRRA1022)the Fundamental Research Funds for the Central Universities(2233300008 and lzujbky-2021-ey18)the Innovative Groups of Basic Research in Gansu Province(22JR5RA391).
文摘Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying some mild assumptions.Let HX,L(ℝ^(n))be the Hardy space associated with both X and L,which is defined by the Lusin area function related to the semigroup generated by L.In this article,the authors establish various maximal function characterizations of the Hardy space HX,L(ℝ^(n))and then apply these characterizations to obtain the solvability of the related Cauchy problem.These results have a wide range of generality and,in particular,the specific spaces X to which these results can be applied include the weighted space,the variable space,the mixed-norm space,the Orlicz space,the Orlicz-slice space,and the Morrey space.Moreover,the obtained maximal function characterizations of the mixed-norm Hardy space,the Orlicz-slice Hardy space,and the Morrey-Hardy space associated with L are completely new.
基金Supported by the NNSF of China(10571014)SEDF of China(20040027001)
文摘Let L be the infinitesimal generator of an analytic semigroup on L 2 (Rn)with Gaussian kernel bounds,and L-α/ 2 be the fractional integrals generated by L for 0< α<n.Let Tj,1 be the singular integral with nonsmooth kernel related to L,or Tj,1=I, Tj,2,Tj,4 be the linear operators,which are bounded on Lp(Rn)for 1<p<∞,and Tj,3=±I(j=1,2,···,m),where I is the identity operator.For b∈L 1 loc (Rn),denote the Toeplitz-type operator byΘαbfmj=1(Tj,1MbIαTj,2 + Tj,3MbIαTj,4),where Mb is a multiplication ope...
文摘The dynamics, stability and control problem of a kind of infinite dimensional system are studied in the functional space with the method of modern Mathematics. First, the dynamical control model of the distributed parameter system with multi-body flexible and multi-topological structure was established which has damping, gyroscopic parts and constrained damping. Secondly, the necessary and sufficient condition of controllability and observability, the stability theory and asymptotic property of the system were obtained. These results expand the theory of the field about the dynamics and control of the system with multi-body flexible structure, and have important engineering significance.
基金The research was supported by NSFC(11720101003 and 11801347)key projects of fundamental research in universities of Guangdong Province(2018KZDXM034).
文摘This article traces several prominent trends in the development of Mobius invariant function spaces Q_(K)with emphasis on theoretic aspects.
文摘We introduce the martingale Morrey spaces built on Banach function spaces. We establish the Doob's inequality, the Burkholder-Gundy inequality and the boundedness of martingale transforms for our martingale Morrey spaces. We also introduce the martingale block spaces. By the Doob's inequality on martingale block spaces, we obtain the Davis' decompositions for martingale Morrey spaces.
文摘A new maximal function is introduced in the dual spaces of test function spaces on spaces of homogeneous type. Using this maximal function, we get new characterization of atomic H^p spaces.
文摘Let Mφ be the operator of multiplication by φ on a Hilbert space of functions analytic on the open unit disk. For an invariant subspace F for the multiplication operator Mz, we derive some spectral properties of the multiplication operator Mφ : F→F. We characterize norm, spectrum, essential norm and essential spectrum of such operators when F has the codimension n property with n∈{1,2,...,+∞}.
文摘This article derives the relation between universal interpolating sequences and some spectral properties of the multiplication operator by the independent variable z in case the underlying space is a Hilbert space of functions analytic on the open unit disk.
文摘In this paper we Ointroduce linear-spaces consisting of continuous functions whose graphs are the attactars of a special class of iterated function systems. We show that such spaces are finite dimensional and give the bases of these spaces in an implicit way. Given such a space, we discuss how to obtain a set of knots for whah the Lagrange interpolation problem by the space is uniquely solvable.
文摘We consider the space X of all analytic functionsof two complex variables s1 and s2, equipping it with the natural locally convex topology and using the growth parameter, the order of f as defined recently by the authors. Under this topology X becomes a Frechet space Apart from finding the characterization of continuous linear functionals, linear transformation on X, we have obtained the necessary and sufficient conditions for a double sequence in X to be a proper bases.
文摘This paper investigates sober spaces and their related structures from different perspectives.First,we extend the descriptive set theory of second countable sober spaces to first countable sober spaces.We prove that a first countable T_(0) space is sober if and only if it does not contain a∏_(2)^(0)-subspace homeomorphic either to S_(D),the natural number set equipped with the Scott topology,or to S_(1),the natural number set equipped with the cofinite topology,and it does not contain any directed closed subset without maximal elements either.Second,we show that if Y is sober,the function space TOP(X,Y)equipped with the Isbell topology(respectively,Scott topology)may be a non-sober space.Furthermore,we provide a uniform construction to d-spaces and well-filtered spaces via irreducible subset systems introduced in[9];we called this an H-well-filtered space.We obtain that,for a T_(0) space X and an H-well-filtered space Y,the function space TOP(X,Y)equipped with the Isbell topology is H-well-filtered.Going beyond the aforementioned work,we solve several open problems concerning strong d-spaces posed by Xu and Zhao in[11].
基金W.-X.Li's research was supported by NSF of China(11871054,11961160716,12131017)the Natural Science Foundation of Hubei Province(2019CFA007)T.Yang's research was supported by the General Research Fund of Hong Kong CityU(11304419).
文摘We consider a Prandtl model derived from MHD in the Prandtl-Hartmann regime that has a damping term due to the effect of the Hartmann boundary layer.A global-in-time well-posedness is obtained in the Gevrey function space with the optimal index 2.The proof is based on a cancellation mechanism through some auxiliary functions from the study of the Prandtl equation and an observation about the structure of the loss of one order tangential derivatives through twice operations of the Prandtl operator.
基金supported by the National Natural Science Foundation of China(11942109)the Natural Science Foundation of Hunan Province(2022JJ30369).
文摘Let Ω be a domain in C^(n) and let Y be a function space on Ω.If a∈Ω and g∈Y with g(a)=0,do there exist functions f_(1),f_(2),…,f_(n)∈Y such that g(z)=∑_(l=1)^(n)(z_(l)−a_(l))f_(l)(z)for all z=(z_(1),z_(2),…,z_(n))∈Ω?This is Gleason’s problem.In this paper,we prove that Gleason’s problem is solvable on the boundary general function space F^(p,q,s)(B)in the unit ball B of C^(n).
基金supported by the Innovation Research for the Postgrad-uates of Guangzhou University(2020GDJC-D06)supported by the National Natural Science Foundation of China(12071229)。
文摘The aim of this paper is to prove a new version of the Riesz-Thorin interpolation theorem on L^(P)(C,H).In the sense of Cullen-regular,we show Hadamard’s three-lines theorem by means of the Maximum modulus principle on a symmetric slice domain.In addition,two applications of the Riesz-Thorin theorem are presented.Finally,we investigate two kinds of Calderón’s complex interpolation methods in LP(C,H).
文摘In this paper, a general function space X(B n ) over the unit ball in C n with norm · X(Bn) is introduced. It contains all Hardy space, Bergman space, Besov space etc. The author gives a formulation of a compact composition operator on X(B n ), related to works of [8] and [10].
文摘In this paper,we characterize the multipliers of generalized Bergman spaces A^p,q,α with 0<p≤1, 0<q, α<∞into some analytic function spaces and into sequence spaces,and show that the multipliers of A^p,q,α(0<p≤1,0<q, α<∞) into a given space are the same as those of A^p,α(0<p≤1, α>0) in almost every case considered. The corollaries on multipliers of the spaces A^p,q,α extend some related results.
文摘We consider the space of rapidly decreasing sequences s and the derivative operator D defined on it. The object of this article is to study the equivalence of a differential operator of infinite order; that is φ(D) =^∞∑k=0φkD^k.φk constant numbers an a power of D.Dn, meaning, is there a isomorphism X (from s onto s) such that Xφ(D) = D^nX?. We prove that if φ(D) is equivalent to Dn, then φ(D) is of finite order, in fact a polynomial of degree n. The question of the equivalence of two differential operators of finite order in the space s is addressed too and solved completely when n = 1.
文摘The Lipschitz class Lip(K, α) on a local field K is defined in [10], and an equivalent relationship between the Ho¨lder type space Cα(K)[9] and Lip(K,α) is given. In this note, we give a 'chain of function spaces' over Euclidian space by defining higher order continuous modulus in R, and point out that there is no need of higher order continuous modulus for describing the chain of function spaces over local fields.
文摘Using the method of undetermined coefficients, we construct a set of shape function spaces of nine-node triangular plate elements converging for any meshes, which generalize Spect's element and Veubeke's element.