In this study,precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties,environmental stability,and gas-sensing performance.Utilizing a hybrid method...In this study,precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties,environmental stability,and gas-sensing performance.Utilizing a hybrid method involving high-pressure processing,stirring,and immiscible solutions,sub-100 nm MXene flake thickness is achieved within the MXene film on the Si-wafer.Functionalization control is achieved by defunctionalizing MXene at 650℃ under vacuum and H2 gas in a CVD furnace,followed by refunctionalization with iodine and bromine vaporization from a bubbler attached to the CVD.Notably,the introduction of iodine,which has a larger atomic size,lower electronegativity,reduce shielding effect,and lower hydrophilicity(contact angle:99°),profoundly affecting MXene.It improves the surface area(36.2 cm^(2) g^(-1)),oxidation stability in aqueous/ambient environments(21 days/80 days),and film conductivity(749 S m^(-1)).Additionally,it significantly enhances the gas-sensing performance,including the sensitivity(0.1119Ωppm^(-1)),response(0.2% and 23%to 50 ppb and 200 ppm NO_(2)),and response/recovery times(90/100 s).The reduced shielding effect of the–I-terminals and the metallic characteristics of MXene enhance the selectivity of I-MXene toward NO2.This approach paves the way for the development of stable and high-performance gas-sensing two-dimensional materials with promising prospects for future studies.展开更多
Lithium–sulfur(Li-S)batteries have the advantages of high theoretical specific capacity(1675 mAh g^(−1)),rich sulfur resources,low production cost,and friendly environment,which makes it one of the most promising nex...Lithium–sulfur(Li-S)batteries have the advantages of high theoretical specific capacity(1675 mAh g^(−1)),rich sulfur resources,low production cost,and friendly environment,which makes it one of the most promising next-generation rechargeable energy storage devices.However,the“shuttle effect”of polysulfide results in the passivation of metal lithium anode,the decrease of battery capacity and coulombic efficiency,and the deterioration of cycle stability.To realize the commercialization of Li-S batteries,its serious“shuttle effect”needs to be suppress.The commercial separators are ineffective to suppress this effect because of its large pore size.Therefore,it is an effective strategy to modify the separator surface and introduce functional modified layer.In addition to the blocking strategy,the catalysis of polysulfide conversion reaction is also an important factor hindering the migration of polysulfides.In this review,the principles of separator modification,functionalization,and catalysis in Li-S batteries are reviewed.Furthermore,the research trend of separator functionalization and polysulfide catalysis in the future is prospected.展开更多
Functionalization of polymer foams by surface coating is of great interest for advanced flow-interactive materials working with well-controlled 3D open channels.However,realizing heavy functional coating via a fast an...Functionalization of polymer foams by surface coating is of great interest for advanced flow-interactive materials working with well-controlled 3D open channels.However,realizing heavy functional coating via a fast and recyclable way remains a big challenge.Here,inspired by the battery electrodes,we propose a scalable mechanic-assisted heavy coating strategy based on the design of sticky jammed fluid(SJF)to conquer the above challenge.Similar to the electrode slurry,the SJF is dominated by a high concentration of active material(≥20 wt%of active carbon,for instance)uniformly dispersed in a protein binder solution.Due to the sticky and solidrich nature of the SJF,one can realize a high coating efficiency of 60 wt%gain per coating.The critical factors controlling the coating processing and quality are further identified and discussed.Furthermore,the functionalized foam is demonstrated as a high-performance shape-customizable toxic gas remover,which can absorb formaldehyde very efficiently at different circumstances,including static adsorption,flow-based filtration,and source interception.Finally,the foam skeleton and the active materials are easily recycled by a facile solvent treatment.This study may inspire new scalable way for fast,heavy,and customizable functionalization of polymeric foams.展开更多
Currently,the increasing demands for portable,implantable,and wearable electronics have triggered the interest in miniaturized energy storage devices.Different from conventional energy storage devices,interdigital mic...Currently,the increasing demands for portable,implantable,and wearable electronics have triggered the interest in miniaturized energy storage devices.Different from conventional energy storage devices,interdigital microbatteries(IMBs) are free of separators and prepared on a single substrate,potentially achieving a short ionic diffusion path and better performance.Meanwhile,they can be easily fabricated and integrated into on-chip miniaturized electronics,holding the promise to provide long-lasting power for advanced microelectronic devices.To date,while many seminal works have been reviewed the topic of microbatteries,there is no work that systematically summarizes the development of IMBs of high energy density and stable voltage platforms from fabrication,functionalization to integration.The current review focuses on the most recent progress in IMBs,discussing advanced micromachining techniques with compatible features to construct high-performance IMBs with smart functions and intelligent integrated systems.The future opportunities and challenges of IMBs are also highlighted,calling for more efforts in this dynamic and fast-growing research field.展开更多
The formation of inorganic-organic hybrids(IOH)on the metallic substrates would play a decisive role in improving their structural and functional features.In this work,the growth of organic coating(OC)consisting of co...The formation of inorganic-organic hybrids(IOH)on the metallic substrates would play a decisive role in improving their structural and functional features.In this work,the growth of organic coating(OC)consisting of coumarin-3-carboxylic acid(3-CCA)and albumin(ALB)on the inorganic layer(IC),produced by plasma electrolysis of AZ31 Mg alloy,led to enabling organically synergistic reactions on the porous inorganic surface,forming a flake-like structure sealing the structural defects of IC.Synergistic actions between OC and IC endow the flake-like structures with chemical protection and photocatalytic performance.Upon contact with a corrosive solution,the IOH layer possesses stable morphologies that delay the corrosive degradation of the whole structure.The electrochemical stability of the sample produced by immersion IC in the organic solution for 10 h(IOH2 sample)was superior to the other samples as it had the lowest corrosion current density(1.69×10^(−10)A·cm^(−2))and the highest top layer resistance(1.2×10^(7)Ω·cm^(2)).Moreover,the IOH layer can photodegrade the organic pollutants in model wastewater,where the highest photocatalytic efficiency of 99.47%was found in the IOH2 sample.Furthermore,computational calculations were performed to assess the relative activity of different parts of the ALB and 3-CCA structures,which provide helpful information into the formation mechanism of the IOH materials.展开更多
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT)(No. 2021R1I1A1A0105621313, No. 2022R1F1A1074441, No. 2022K1A3A1A20014496, and No. 2022R1F1A1074083)supported by the Ministry of Education Funding (No. RIS 2021-004)supported by the Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (RS-2023-00284318).
文摘In this study,precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties,environmental stability,and gas-sensing performance.Utilizing a hybrid method involving high-pressure processing,stirring,and immiscible solutions,sub-100 nm MXene flake thickness is achieved within the MXene film on the Si-wafer.Functionalization control is achieved by defunctionalizing MXene at 650℃ under vacuum and H2 gas in a CVD furnace,followed by refunctionalization with iodine and bromine vaporization from a bubbler attached to the CVD.Notably,the introduction of iodine,which has a larger atomic size,lower electronegativity,reduce shielding effect,and lower hydrophilicity(contact angle:99°),profoundly affecting MXene.It improves the surface area(36.2 cm^(2) g^(-1)),oxidation stability in aqueous/ambient environments(21 days/80 days),and film conductivity(749 S m^(-1)).Additionally,it significantly enhances the gas-sensing performance,including the sensitivity(0.1119Ωppm^(-1)),response(0.2% and 23%to 50 ppb and 200 ppm NO_(2)),and response/recovery times(90/100 s).The reduced shielding effect of the–I-terminals and the metallic characteristics of MXene enhance the selectivity of I-MXene toward NO2.This approach paves the way for the development of stable and high-performance gas-sensing two-dimensional materials with promising prospects for future studies.
基金support of the National Natural Science Foundation of China(No.21773188,No.22179109)central universities fundamental research fund(XDJK2019AA002)Chongqing Natural Science fund(cstc2020jcyj-bshx0047,cstc2021jcyj-bsh0173).
文摘Lithium–sulfur(Li-S)batteries have the advantages of high theoretical specific capacity(1675 mAh g^(−1)),rich sulfur resources,low production cost,and friendly environment,which makes it one of the most promising next-generation rechargeable energy storage devices.However,the“shuttle effect”of polysulfide results in the passivation of metal lithium anode,the decrease of battery capacity and coulombic efficiency,and the deterioration of cycle stability.To realize the commercialization of Li-S batteries,its serious“shuttle effect”needs to be suppress.The commercial separators are ineffective to suppress this effect because of its large pore size.Therefore,it is an effective strategy to modify the separator surface and introduce functional modified layer.In addition to the blocking strategy,the catalysis of polysulfide conversion reaction is also an important factor hindering the migration of polysulfides.In this review,the principles of separator modification,functionalization,and catalysis in Li-S batteries are reviewed.Furthermore,the research trend of separator functionalization and polysulfide catalysis in the future is prospected.
基金sponsored by the Double First-Class Construction Funds of Sichuan University and National Natural Science Foundation of China(NNSFC)financial support from the National Natural Science Foundation of China(NNSFC grants 51873126,51422305,and 51721091).
文摘Functionalization of polymer foams by surface coating is of great interest for advanced flow-interactive materials working with well-controlled 3D open channels.However,realizing heavy functional coating via a fast and recyclable way remains a big challenge.Here,inspired by the battery electrodes,we propose a scalable mechanic-assisted heavy coating strategy based on the design of sticky jammed fluid(SJF)to conquer the above challenge.Similar to the electrode slurry,the SJF is dominated by a high concentration of active material(≥20 wt%of active carbon,for instance)uniformly dispersed in a protein binder solution.Due to the sticky and solidrich nature of the SJF,one can realize a high coating efficiency of 60 wt%gain per coating.The critical factors controlling the coating processing and quality are further identified and discussed.Furthermore,the functionalized foam is demonstrated as a high-performance shape-customizable toxic gas remover,which can absorb formaldehyde very efficiently at different circumstances,including static adsorption,flow-based filtration,and source interception.Finally,the foam skeleton and the active materials are easily recycled by a facile solvent treatment.This study may inspire new scalable way for fast,heavy,and customizable functionalization of polymeric foams.
基金financial support from the National Natural Science Foundation of China(NSFC)(22109009)the China Postdoctoral Science Foundation(2020M680376)+2 种基金the National Key R&D Program of China(2017YFB1104300)the NSFC(21975027,22035005,52073159)the NSFC-STINT(21911530143)。
文摘Currently,the increasing demands for portable,implantable,and wearable electronics have triggered the interest in miniaturized energy storage devices.Different from conventional energy storage devices,interdigital microbatteries(IMBs) are free of separators and prepared on a single substrate,potentially achieving a short ionic diffusion path and better performance.Meanwhile,they can be easily fabricated and integrated into on-chip miniaturized electronics,holding the promise to provide long-lasting power for advanced microelectronic devices.To date,while many seminal works have been reviewed the topic of microbatteries,there is no work that systematically summarizes the development of IMBs of high energy density and stable voltage platforms from fabrication,functionalization to integration.The current review focuses on the most recent progress in IMBs,discussing advanced micromachining techniques with compatible features to construct high-performance IMBs with smart functions and intelligent integrated systems.The future opportunities and challenges of IMBs are also highlighted,calling for more efforts in this dynamic and fast-growing research field.
基金supported by the National Research Foundation of Korea(NRF)funded by the Korean Government(MSIT)(No.2022R1A2C1006743).
文摘The formation of inorganic-organic hybrids(IOH)on the metallic substrates would play a decisive role in improving their structural and functional features.In this work,the growth of organic coating(OC)consisting of coumarin-3-carboxylic acid(3-CCA)and albumin(ALB)on the inorganic layer(IC),produced by plasma electrolysis of AZ31 Mg alloy,led to enabling organically synergistic reactions on the porous inorganic surface,forming a flake-like structure sealing the structural defects of IC.Synergistic actions between OC and IC endow the flake-like structures with chemical protection and photocatalytic performance.Upon contact with a corrosive solution,the IOH layer possesses stable morphologies that delay the corrosive degradation of the whole structure.The electrochemical stability of the sample produced by immersion IC in the organic solution for 10 h(IOH2 sample)was superior to the other samples as it had the lowest corrosion current density(1.69×10^(−10)A·cm^(−2))and the highest top layer resistance(1.2×10^(7)Ω·cm^(2)).Moreover,the IOH layer can photodegrade the organic pollutants in model wastewater,where the highest photocatalytic efficiency of 99.47%was found in the IOH2 sample.Furthermore,computational calculations were performed to assess the relative activity of different parts of the ALB and 3-CCA structures,which provide helpful information into the formation mechanism of the IOH materials.