期刊文献+
共找到183篇文章
< 1 2 10 >
每页显示 20 50 100
Sound Transmission Loss Analysis of a Double Plate-Acoustic Cavity Coupling System with In-Plane Functionally Graded Materials
1
作者 Changzhong Chen Mingfei Chen Wenliang Yu 《Journal of Applied Mathematics and Physics》 2024年第6期2333-2345,共13页
In this paper, the isogeometric analysis (IGA) is employed to develop an acoustic radiation model for a double plate-acoustic cavity coupling system, with a focus on analyzing the sound transmission loss (STL). The fu... In this paper, the isogeometric analysis (IGA) is employed to develop an acoustic radiation model for a double plate-acoustic cavity coupling system, with a focus on analyzing the sound transmission loss (STL). The functionally graded (FG) plate exhibits a different material properties in-plane, and the power-law rule is adopted as the governing principle for material mixing. To validate the harmonic response and demonstrate the accuracy and convergence of the isogeometric modeling, ANASYS is utilized to compare with numerical examples. A plane wave serves as the acoustic excitation, and the Rayleigh integral is applied to discretize the radiated plate. The STL results are compared with the literature, confirming the reliability of the coupling system. Finally, the investigation is conducted to study impact of cavity depth and power-law parameter on the STL. 展开更多
关键词 Isogeometric Analysis Sound Transmission Loss Double-Plate System functionally graded materials Acoustic Structure Coupling
下载PDF
Review of functionally graded materials processed by additive manufacturing 被引量:2
2
作者 宋学平 黄健康 樊丁 《China Welding》 CAS 2023年第3期41-50,共10页
Additive manufacturing(AM)technology makes parts through layer-by-layer deposition,which can regulate the microstructure and properties of different parts of a single part well.It provides a new idea for the preparati... Additive manufacturing(AM)technology makes parts through layer-by-layer deposition,which can regulate the microstructure and properties of different parts of a single part well.It provides a new idea for the preparation of functionally gradient materials(FGM),and has become a research hotspot at present.By referring to and analyzing the recent research achievements in the additive manufacturing tech-nology of FGM,the latest research progress at domestic and abroad from four aspects were summaried:selective laser melting additive man-ufacturing,electron beam additive manufacturing,arc additive manufacturing,path planning,and material texture.Moreover,the existing problems in the research are pointed out,and the future research direction and focus are prospected. 展开更多
关键词 functionally graded materials additive manufacture research progress
下载PDF
The nonlocal solution of two parallel cracks in functionally graded materials subjected to harmonic anti-plane shear waves 被引量:5
3
作者 Jun Liang Shiping Wu Shanyi Du Center for Composite Materials and Structure,Harbin Institute of Technology,Harbin 150001,China 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2007年第4期427-435,共9页
In this paper, the dynamic interaction of two parallel cracks in functionally graded materials (FGMs) is investigated by means of the non-local theory. To make the analysis tractable, the shear modulus and the mater... In this paper, the dynamic interaction of two parallel cracks in functionally graded materials (FGMs) is investigated by means of the non-local theory. To make the analysis tractable, the shear modulus and the material density are assumed to vary exponentially with the coordinate vertical to the crack. To reduce mathematical difficulties, a one-dimensional non-local kernel is used instead of a twodimensional one for the dynamic problem to obtain stress fields near the crack tips. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations, in which the unknown variables are the jumps of displacements across the crack surfaces. To solve the dual integral equations, the jumps of displacements across the crack surfaces are expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularity is present at the crack tips. The non-local elastic solutions yield a finite hoop stress at the crack tips. The present result provides theoretical references helpful for evaluating relevant strength and preventing material failure of FGMs with initial cracks. The magnitude of the finite stress field depends on relevant parameters, such as the crack length, the distance between two parallel cracks, the parameter describing the FGMs, the frequency of the incident waves and the lattice parameter of materials. 展开更多
关键词 CRACK The non-local theory Stress waves functionally graded materials
下载PDF
High Heat Flux Testing of B_4C/Cu and SiC/Cu Functionally Graded Materials Simulated by Laser and Electron Beam 被引量:4
4
作者 刘翔 谌继明 +3 位作者 张斧 许增裕 葛昌纯 李江涛 《Plasma Science and Technology》 SCIE EI CAS CSCD 2002年第1期1171-1176,共6页
B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the si... B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the simulation of plasma disruption process of the future fusion reactors, And a study on eroded products of B4C/Cu FGM under transient thermal load of electron beam was performed. In the experiment, SEM and EDS analysis indicated that B4C and SiC were decomposed, carbon was preferentially evaporated under high thermal load, and a part of Si and Cu were melted, in addition, the splash of melted metal and the particle emission of brittle destruction were also found. Different erosive behaviors of carbon-based materials (CBMs) caused by laser and electron beam were also discussed. 展开更多
关键词 SIC High Heat Flux Testing of B4C/Cu and SiC/Cu functionally graded materials Simulated by Laser and Electron Beam CU
下载PDF
Hybrid graded element model for transient heat conduction in functionally graded materials 被引量:4
5
作者 Lei-Lei Cao Qing-Hua Qin Ning Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第1期128-139,共12页
This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a f... This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a fundamental solution in Laplace space for FGMs is constructed. Next, a hybrid graded element is formulated based on the obtained fundamental solution and a frame field. As a result, the graded properties of FGMs are naturally reflected by using the fundamental solution to interpolate the intra-element field. Further, Stefest's algorithm is employed to convert the results in Laplace space back into the time-space domain. Finally, the performance of the proposed method is assessed by several benchmark examples. The results demonstrate well the efficiency and accuracy of the proposed method. 展开更多
关键词 graded element model functionally graded materials Hybrid FEM Transient heat conduction
下载PDF
COUPLED THERMAL/MECHANICAL ANALYSIS FOR THE FRACTURE OF FUNCTIONALLY GRADED MATERIALS UNDER TRANSIENT THERMAL LOADING 被引量:1
6
作者 Zhang Xinghong Wang Baolin Han Jiecai 《Acta Mechanica Solida Sinica》 SCIE EI 2002年第2期95-101,共7页
A comprehensive treatment of fracture of functionally gradedmaterials (FGMs) is provided. It is assumed that the materialproperties depend only on the coordinate perpendicular to the cracksurface And vary continuously... A comprehensive treatment of fracture of functionally gradedmaterials (FGMs) is provided. It is assumed that the materialproperties depend only on the coordinate perpendicular to the cracksurface And vary continuously along the crack faces. By using alaminated composite plate model to simulate the ma- Terialnon-homogeneity, an algorithm for solving the system based on Laplacetransform and Fourier transform Techniques is presented. Unlikeearlier studies that considered certain assumed propertydistributions and a Single crack problem, the current investigationstudies multiple crack problem in the FGMs with arbitrarily Varyingmaterial properties. Transient thermal stresses are presented. 展开更多
关键词 functionally graded materials fracture mechanics transient thermal stress Laplace trans- form
下载PDF
DYNAMIC RESPONSE FOR FUNCTIONALLY GRADED MATERIALS WITH PENNY-SHAPED CRACKS 被引量:1
7
作者 Wang Baolin Han Jiecai Du Shanyi 《Acta Mechanica Solida Sinica》 SCIE EI 1999年第2期106-113,共8页
This paper provides a method for studying the penny-shaped cracksconfiguration in functionally graded material(FGM)structuressubjected to dynamic or steady loading. It is assumed that the FGMare transversely isotropic... This paper provides a method for studying the penny-shaped cracksconfiguration in functionally graded material(FGM)structuressubjected to dynamic or steady loading. It is assumed that the FGMare transversely isotropic and all the material properties onlydepend on the axial coordi- nate z. In the analysis, the elasticregion is treated as a number of layers. The material properties aretaken to be constants for each layer. By utilizing the Laplacetransform and Hankel transform tech- nique, the general solution forthe layers are derived. 展开更多
关键词 fracture mechanics functionally graded materials MULTILAYERS
下载PDF
THERMAL AND THERMO-ELASTIC-PLASTIC RESPONSE OF CERAMIC-METAL FUNCTIONALLY GRADED MATERIALS—THERMAL SHOCK PROBLEM 被引量:1
8
作者 Zhai, PC Zhang, QJ Yuan, RZ 《Acta Mechanica Solida Sinica》 SCIE EI 1997年第2期148-156,共9页
The thermal and thermo-elastic-plastic response of newly developed ceramic-metal functionally graded materials under a thermal shock load is studied. The materials are heated at the ceramic surface with a sudden high-... The thermal and thermo-elastic-plastic response of newly developed ceramic-metal functionally graded materials under a thermal shock load is studied. The materials are heated at the ceramic surface with a sudden high-intensity heat flux input, and cooled at the metal surface with a flowing liquid nitrogen. Emphasis is placed on two aspects: (1) the influence of the graded composition of the materials on the temperature and stress response; and (2) the optimum design of the graded composition from a unified viewpoint of the heat insulation property and stress relaxation property. Moreover, a comparison between the thermoelastic stress and the thermo-elastic-plastic stress is also made to indicate the plasticity effect. 展开更多
关键词 functionally graded materials thermal shock thermo-elastic-plastic response
下载PDF
Evaluation of strongly singular domain integrals for internal stresses in functionally graded materials analyses using RIBEM
9
作者 Hai-Feng Peng Jian Liu +1 位作者 Qiang-Hua Zhu Ch.Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第6期917-926,共10页
An accurate evaluation of strongly singular domain integral appearing in the stress representation formula is a crucial problem in the stress analysis of functionally graded materials using boundary element method.To ... An accurate evaluation of strongly singular domain integral appearing in the stress representation formula is a crucial problem in the stress analysis of functionally graded materials using boundary element method.To solve this problem,a singularity separation technique is presented in the paper to split the singular integral into regular and singular parts by subtracting and adding a singular term.The singular domain integral is transformed into a boundary integral using the radial integration method.Analytical expressions of the radial integrals are obtained for two commonly used shear moduli varying with spatial coordinates.The regular domain integral,after expressing the displacements in terms of the radial basis functions,is also transformed to the boundary using the radial integration method.Finally,a boundary element method without internal cells is established for computing the stresses at internal nodes of the functionally graded materials with varying shear modulus. 展开更多
关键词 Stress integral equations functionally graded materials Strongly singular domain integral Singularity separation technique Radial integration method
下载PDF
Adaptive phase field modelling of crack propagation in orthotropic functionally graded materials
10
作者 Hirshikesh Emilio Martínez-Paneda Sundararajan Natarajan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期185-195,共11页
In this work,we extend the recently proposed adaptive phase field method to model fracture in orthotropic functionally graded materials(FGMs).A recovery type error indicator combined with quadtree decomposition is emp... In this work,we extend the recently proposed adaptive phase field method to model fracture in orthotropic functionally graded materials(FGMs).A recovery type error indicator combined with quadtree decomposition is employed for adaptive mesh refinement.The proposed approach is capable of capturing the fracture process with a localized mesh refinement that provides notable gains in computational efficiency.The implementation is validated against experimental data and other numerical experiments on orthotropic materials with different material orientations.The results reveal an increase in the stiffness and the maximum force with increasing material orientation angle.The study is then extended to the analysis of orthotropic FGMs.It is observed that,if the gradation in fracture properties is neglected,the material gradient plays a secondary role,with the fracture behaviour being dominated by the orthotropy of the material.However,when the toughness increases along the crack propagation path,a substantial gain in fracture resistance is observed. 展开更多
关键词 functionally graded materials Phase field fracture Polygonal finite element method Orthotropic materials Recovery based error indicator
下载PDF
Single-pulse chaotic dynamics of functionally graded materials plate
11
作者 Yu-Gao Huangfu Fang-Qi Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第4期593-601,共9页
Single-pulse chaos are studied for a functionally graded materials rectangular plate. By means of the global perturbation method, explicit conditions for the existence of a SiZnikov-type homoclinic orbit are obtained ... Single-pulse chaos are studied for a functionally graded materials rectangular plate. By means of the global perturbation method, explicit conditions for the existence of a SiZnikov-type homoclinic orbit are obtained for this sys- tem, which suggests that chaos are likely to take place. Then, numerical simulations are given to test the analytical predic- tions. And from our analysis, when the chaotic motion oc- curs, there are a quasi-period motion in a two-dimensional subspace and chaos in another two-dimensional supplemen- tary subspace. 展开更多
关键词 functionally graded materials ~ Single-pulse ~Melnikov's method ~ Homoclinic orbit ~ Numerical simula-tion
下载PDF
Design of Co-sedimentation Experiments Used to Fabricate Functionally Graded Materials with a Continuous Change of Composition 被引量:1
12
作者 杨中民 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第2期11-13,共3页
In the process of particle settling in a dilute,a density graded distribution of the liquid below the suspension needs to be designed according to the gravity of the suspension prior to sedimentation.In the present pa... In the process of particle settling in a dilute,a density graded distribution of the liquid below the suspension needs to be designed according to the gravity of the suspension prior to sedimentation.In the present paper a compositionally graded W-Mo composite was formed via the settling of the W and Mo particles,with a density gradient distributed in the initial clear liquid along the settling direction. 展开更多
关键词 co-sedimentation DESIGN functionally graded material
下载PDF
Influence of Inclusion Shape on Thermoelasto-Plastic Optimun Design of Ceramic Metal Functionally Graded Materials
13
作者 王继辉 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2001年第1期19-24,29,共7页
A nonlinear finite element method is applied to observe how inclusion shape influence the thermal response of a ceramic-metal functionally graded material (FGM). The elastic and plastic behaviors of the layers which a... A nonlinear finite element method is applied to observe how inclusion shape influence the thermal response of a ceramic-metal functionally graded material (FGM). The elastic and plastic behaviors of the layers which are two-phase isotropic composites consisting of randomly oriented elastic spheroidal Inclusions and a ductile matrix are predicted by cc mean field method. The prediction results show that inclusion shape has remarkable influence on the overall behavior of the composite. The consequences of the thermal response analysis of the FGM are that the response is dependent on inclusion shape and its composition profile cooperatively and that the plastic behavior of each layer should be taken into account in optimum design of a ceramic-metal FGM. 展开更多
关键词 inclusion shape ceramic-metal functionally graded material mean field method elastoplastic behavior
下载PDF
Design and Synthesis of Ti-ZrO_2 Functionally Graded Materials
14
作者 Lidong Teng, Fuming Wang, Wenchao Li Metallurgy School, University of Science and Technology Beijing, Beijing 100083, China 《Journal of University of Science and Technology Beijing》 CSCD 2001年第1期48-52,共5页
Functionally graded materials (FGMs) based on titanium-zirconia system have been prepared by powder metallurgical method. The graded interlayer number and the compositional distribution have been designed by elastic f... Functionally graded materials (FGMs) based on titanium-zirconia system have been prepared by powder metallurgical method. The graded interlayer number and the compositional distribution have been designed by elastic finite element method. The interfacial microstructure between layers, the combining state of phases between Ti and ZrO2 have been investigated by means of XRD (X-ray diffraction), SEM (scanning electron microscope), EDS (energy dispersive spectrometer) and so on. The co-existing region of Ti and ZrO2 has been determined by thermodynamic calculation to control the sintering atmosphere. The experimental results show that the joint between Ti and ZrO2 phases is physical in this composite and ZrO2 mainly exists as tetragonal phase. The microstructure of Ti-ZrO2 system FGM exhibits a transition from a zirconia particle dispersion in a titanium matrix to an inverse dispersion of titanium in zirconia. The gradient structure of titanium and zirconia can relieve thermal stress. 展开更多
关键词 Ti-ZrO2 system functionally graded material thermodynamic analysis finite element method
下载PDF
In-situ powder mixing for laser-based directed energy deposition of functionally graded materials
15
作者 Ji-Peng Chen Shou-Chun Xie He Huang 《Advances in Manufacturing》 SCIE EI CAS CSCD 2024年第1期150-166,共17页
The mixing of powders is a highly relevant field under additive manufacturing,however,it has attracted limited interest to date.The in-situ mixing of various powders remains a significant challenge.This paper proposes... The mixing of powders is a highly relevant field under additive manufacturing,however,it has attracted limited interest to date.The in-situ mixing of various powders remains a significant challenge.This paper proposes a new method utilizing a static mixer for the in-situ mixing of multiple powders through the laser-based directed energy deposition(DED)of functionally graded materials.Firstly,a powder-mixing experimental platform was established;WC and 316L powders were selected for the mixing experiments.Secondly,scanning electron microscopy,energy dispersive spectroscopy,and image processing were used to visually evaluate the homogeneity and proportion of the in-situ mixed powder.Furthermore,powder-mixing simulations were conducted to determine the powder-mixing mechanism.In the simulations,a powder carrier gas flow field and particle mixing were employed.Finally,a WC/316L metal matrix composite sample was produced using laser-based DED to verify the application potential of the static mixer.It was found that the static mixer could adjust the powder ratio online,and a response time of 1–2 s should be considered when adjusting the ratio of the mixed powder.A feasible approach for in-situ powder mixing for laser-based DED was demonstrated and investigated,creating the basis for functionally graded materials. 展开更多
关键词 LASER DEPOSITION Static mixer Powder mixing functionally graded materials
原文传递
Dynamic Characteristics of Functionally Graded Timoshenko Beams by Improved Differential Quadrature Method
16
作者 Xiaojun Huang Liaojun Zhang +1 位作者 Hanbo Cui Gaoxing Hu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1647-1668,共22页
This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node... This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node distribution.Firstly,based on the first-order shear deformation theory,the governing equation of free vibration of a functionally graded beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam axial displacement,transverse displacement,and cross-sectional rotation angle by considering the effects of shear deformation and rotational inertia of the beam cross-section.Then,ignoring the shear deformation of the beam section and only considering the effect of the rotational inertia of the section,the governing equation of the beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam transverse displacement.Based on the differential quadrature method theory,the eigenvalue problem of ordinary differential equations is transformed into the eigenvalue problem of standard generalized algebraic equations.Finally,the first several natural frequencies of the beam can be calculated.The feasibility and accuracy of the improved DQM are verified using the finite element method(FEM)and combined with the results of relevant literature. 展开更多
关键词 Timoshenko beams functionally graded materials dynamic characteristics natural frequency improved differential quadrature method
下载PDF
Numerical Analysis of Permeability of Functionally Graded Scaffolds
17
作者 Dmitry Bratsun Natalia Elenskaya +1 位作者 Ramil Siraev Mikhail Tashkinov 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1463-1479,共17页
In this work,we numerically study the hydrodynamic permeability of new-generation artificial porous materials used as scaffolds for cell growth in a perfusion bioreactor.We consider two popular solid matrix designs ba... In this work,we numerically study the hydrodynamic permeability of new-generation artificial porous materials used as scaffolds for cell growth in a perfusion bioreactor.We consider two popular solid matrix designs based on triply periodic minimal surfaces,the Schwarz P(primitive)and D(diamond)surfaces,which enable the creation of materials with controlled porosity gradients.The latter property is crucial for regulating the shear stress field in the pores of the scaffold,which makes it possible to control the intensity of cell growth.The permeability of functionally graded materials is studied within the framework of both a microscopic approach based on the Navier-Stokes equation and an averaged description of the liquid filtration through a porous medium based on the equations of the Darcy or Forchheimer models.We calculate the permeability coefficients for both types of solid matrices formed by Schwarz surfaces,study their properties concerning forward and reverse fluid flows,and determine the ranges of Reynolds number for which the description within the Darcy or Forchheimer model is applicable.Finally,we obtain a shear stress field that varies along the sample,demonstrating the ability to tune spatially the rate of tissue growth. 展开更多
关键词 Porous media filtration models scaffolds functionally graded materials
下载PDF
Multi-material additive manufacturing-functionally graded materials by means of laser remelting during laser powder bed fusion
18
作者 Alexander SCHMIDT Felix JENSCH Sebastian HÄRTEL 《Frontiers of Mechanical Engineering》 SCIE CSCD 2023年第4期183-193,共11页
Many processes may be used for manufacturing functionally graded materials.Among them,additive manufacturing seems to be predestined due to near-net shape manufacturing of complex geometries combined with the possibil... Many processes may be used for manufacturing functionally graded materials.Among them,additive manufacturing seems to be predestined due to near-net shape manufacturing of complex geometries combined with the possibility of applying different materials in one component.By adjusting the powder composition of the starting material layer by layer,a macroscopic and step-like gradient can be achieved.To further improve the step-like gradient,an enhancement of the in-situ mixing degree,which is limited according to the state of the art,is necessary.In this paper,a novel technique for an enhancement of the in-situ material mixing degree in the melt pool by applying laser remelting(LR)is described.The effect of layer-wise LR on the formation of the interface was investigated using pure copper and low-alloy steel in a laser powder bed fusion process.Subsequent cross-sectional selective electron microscopic analyses were carried out.By applying LR,the mixing degree was enhanced,and the reaction zone thickness between the materials was increased.Moreover,an additional copper and iron-based phase was formed in the interface,resulting in a smoother gradient of the chemical composition than the case without LR.The Marangoni convection flow and thermal diffusion are the driving forces for the observed effect. 展开更多
关键词 multi-material additive manufacturing(MMAM) functionally graded materials(FGMs) laser powder bed fusion(L-PBF) laser remelting(LR) pure copper
原文传递
Transfer matrix method for free and forced vibrations of multi-level functionally graded material stepped beams with different boundary conditions
19
作者 Xiaoyang SU Tong HU +3 位作者 Wei ZHANG Houjun KANG Yunyue CONG Quan YUAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期983-1000,共18页
Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore th... Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore the dynamic behaviors of an FGM stepped beam with different boundary conditions based on an efficient solving method.Under the assumptions of the Euler-Bernoulli beam theory,the governing differential equations of an individual FGM beam are derived with Hamilton’s principle and decoupled via the separation-of-variable approach.Then,the free and forced vibrations of the FGM stepped beam are solved with the transfer matrix method(TMM).Two models,i.e.,a three-level FGM stepped beam and a five-level FGM stepped beam,are considered,and their natural frequencies and mode shapes are presented.To demonstrate the validity of the method in this paper,the simulation results by ABAQUS are also given.On this basis,the detailed parametric analyses on the frequencies and dynamic responses of the three-level FGM stepped beam are carried out.The results show the accuracy and efficiency of the TMM. 展开更多
关键词 transfer matrix method(TMM) free vibration forced vibration functionally graded material(FGM) stepped beam
下载PDF
Metallic Functionally Graded Materials:A Specific Class of Advanced Composites 被引量:12
20
作者 Jerzy J.Sobczak Ludmil Drenchev 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2013年第4期297-316,共20页
Functionally graded materials, including their characterization, properties and production methods are a new rapidly developing field of materials science. The aims of this review are to systematize the basic producti... Functionally graded materials, including their characterization, properties and production methods are a new rapidly developing field of materials science. The aims of this review are to systematize the basic production techniques for manufacturing functionally graded materials. Attention is paid to the principles for obtaining graded structure mainly in the metal based functionally graded materials. Several unpublished results obtained by the authors have been discussed briefly. Experimental methods and theoretical analysis for qualitative and quantitative estimation of graded properties have also been presented. The article can be useful for people who work in the field of functionally graded structures and materials, and who need a compact informative review of recent experimental and theoretical activity in this area. 展开更多
关键词 functionally graded materials Production techniques Theoretical analysis
原文传递
上一页 1 2 10 下一页 到第
使用帮助 返回顶部