Using the generalized conditional symmetry approach, we obtain a number of new generalized (1+1)-dimensional nonlinear wave equations that admit derivative-dependent functional separable solutions.
The generalized conditional symmetry approach is applied to study the variable separation of the extended wave equations. Complete classification of those equations admitting functional separable solutions is obtained...The generalized conditional symmetry approach is applied to study the variable separation of the extended wave equations. Complete classification of those equations admitting functional separable solutions is obtained and exact separable solutions to some of the resulting equations are constructed.展开更多
Invariant subspace method is exploited to obtain exact solutions of the two- component b-family system. It is shown that the two-component b-family system admits the generalized functional separable solutions. Further...Invariant subspace method is exploited to obtain exact solutions of the two- component b-family system. It is shown that the two-component b-family system admits the generalized functional separable solutions. Furthermore, blow up and behavior of those exact solutions are also investigated.展开更多
The functionally generalized variable separation of the generalized nonlinear diffusion equations ut = A(u, Ux)Uxx + B(u, ux) is studied by using the conditional Lie-Blicklund symmetry method. The variant forms o...The functionally generalized variable separation of the generalized nonlinear diffusion equations ut = A(u, Ux)Uxx + B(u, ux) is studied by using the conditional Lie-Blicklund symmetry method. The variant forms of the considered equations, which admit the corresponding conditional Lie--Biicklund symmetries, are characterized. To construct functionally gener- alized separable solutions, several concrete examples defined on the exponential and trigonometric invariant subspaces are provided.展开更多
We present basic theory of variable separation for (1 + 1)-dimensional nonlinear evolution equations withmixed partial derivatives.As an application,we classify equations u_(xt)=A(u,u_x)u_(xxx)+B(u,u_x) that admits de...We present basic theory of variable separation for (1 + 1)-dimensional nonlinear evolution equations withmixed partial derivatives.As an application,we classify equations u_(xt)=A(u,u_x)u_(xxx)+B(u,u_x) that admits derivative-dependent functional separable solutions (DDFSSs) and illustrate how to construct those DDFSSs with some examples.展开更多
By using the approximate derivative-dependent functional variable separation approach, we study the quasi-linear diffusion equations with a weak source ut = (A(u)Ux)x + eB(u, Ux). A complete classification of t...By using the approximate derivative-dependent functional variable separation approach, we study the quasi-linear diffusion equations with a weak source ut = (A(u)Ux)x + eB(u, Ux). A complete classification of these perturbed equations which admit approximate derivative-dependent functional separable solutions is listed. As a consequence, some approxi- mate solutions to the resulting perturbed equations are constructed via examples.展开更多
The functionally generalized variable separation solutions of a general KdV-type equations u_t=u_(xxx) +A(u, u_x)u_(xx) + B(u, u_x) are investigated by developing the conditional Lie-Backlund symmetry method. A comple...The functionally generalized variable separation solutions of a general KdV-type equations u_t=u_(xxx) +A(u, u_x)u_(xx) + B(u, u_x) are investigated by developing the conditional Lie-Backlund symmetry method. A complete classification of the considered equations, which admit multi-dimensional invariant subspaces governed by higher-order conditional Lie-B¨acklund symmetries, is presented. As a result, several concrete examples are provided to construct functionally generalized variable separation solutions of some resulting equations.展开更多
The inhomogeneous nonlinear diffusion equation is studied by invariant subspace and condi- tional Lie=Bgcklund symmetry methods. It is shown that the equations admit a class of invariant subspaces governed by the nonl...The inhomogeneous nonlinear diffusion equation is studied by invariant subspace and condi- tional Lie=Bgcklund symmetry methods. It is shown that the equations admit a class of invariant subspaces governed by the nonlinear ordinary differential equations, which is equivalent to a kind of higher=order conditional Lie-B^icklund symmetries of the equations. As a consequence, a number of new solutions to the inhomogeneous nonlinear diffusion equations are constructed explicitly or reduced to solving finite-dimensional dynamical sys- tems.展开更多
As an extension to the derivative-dependent functional variable separation approach, the approximate derivative-dependent functional variable separation approach is proposed, and it is applied to study the generalized...As an extension to the derivative-dependent functional variable separation approach, the approximate derivative-dependent functional variable separation approach is proposed, and it is applied to study the generalized diffusion equations with perturbation. Complete classification of these perturbed equations which admit approximate derivative-dependent functional separable solutions is obtained. As a result, the corresponding approximate derivative-dependent functional separable solutions to some resulting perturbed equations are derived by way of examples.展开更多
基金The project supported by the National Outstanding Youth Foundation of China (No.19925522)+2 种基金the Research Fund for the Doctoral Program of Higher Education of China (Grant.No.2000024832)National Natural Science Foundation of China (No.90203001)
文摘Using the generalized conditional symmetry approach, we obtain a number of new generalized (1+1)-dimensional nonlinear wave equations that admit derivative-dependent functional separable solutions.
文摘The generalized conditional symmetry approach is applied to study the variable separation of the extended wave equations. Complete classification of those equations admitting functional separable solutions is obtained and exact separable solutions to some of the resulting equations are constructed.
基金supported by NSFC(11471260)the Foundation of Shannxi Education Committee(12JK0850)
文摘Invariant subspace method is exploited to obtain exact solutions of the two- component b-family system. It is shown that the two-component b-family system admits the generalized functional separable solutions. Furthermore, blow up and behavior of those exact solutions are also investigated.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11371293,11401458,and 11501438)the National Natural Science Foundation of China,Tian Yuan Special Foundation(Grant No.11426169)the Natural Science Basic Research Plan in Shaanxi Province of China(Gran No.2015JQ1014)
文摘The functionally generalized variable separation of the generalized nonlinear diffusion equations ut = A(u, Ux)Uxx + B(u, ux) is studied by using the conditional Lie-Blicklund symmetry method. The variant forms of the considered equations, which admit the corresponding conditional Lie--Biicklund symmetries, are characterized. To construct functionally gener- alized separable solutions, several concrete examples defined on the exponential and trigonometric invariant subspaces are provided.
基金National Natural Science Foundation of China under Grant Nos.10447007 and 10671156the Natural Science Foundation of Shaanxi Province of China under Grant No.2005A13
文摘We present basic theory of variable separation for (1 + 1)-dimensional nonlinear evolution equations withmixed partial derivatives.As an application,we classify equations u_(xt)=A(u,u_x)u_(xxx)+B(u,u_x) that admits derivative-dependent functional separable solutions (DDFSSs) and illustrate how to construct those DDFSSs with some examples.
基金Project supported by the National Natural Science Foundation of China(Grant No.10671156)the Natural Science Foundation of Shaanxi Province of China(Grant No.SJ08A05)
文摘By using the approximate derivative-dependent functional variable separation approach, we study the quasi-linear diffusion equations with a weak source ut = (A(u)Ux)x + eB(u, Ux). A complete classification of these perturbed equations which admit approximate derivative-dependent functional separable solutions is listed. As a consequence, some approxi- mate solutions to the resulting perturbed equations are constructed via examples.
基金Supported by the National Science Foundation of China under Grant Nos.11371293,11501419the Mathematical Discipline Foundation of Shaanxi Province of China under Grant No.14TSXK02+1 种基金the Natural Science Foundation of Weinan Normal University under Grant No.16ZRRC05 and 15YKS005Natural Science Foundation of Hebei Province of China under Grant No.A2018207030
文摘The functionally generalized variable separation solutions of a general KdV-type equations u_t=u_(xxx) +A(u, u_x)u_(xx) + B(u, u_x) are investigated by developing the conditional Lie-Backlund symmetry method. A complete classification of the considered equations, which admit multi-dimensional invariant subspaces governed by higher-order conditional Lie-B¨acklund symmetries, is presented. As a result, several concrete examples are provided to construct functionally generalized variable separation solutions of some resulting equations.
基金supported by National Natural Science Foundation of China for Distinguished Young Scholars(Grant No.10925104)the PhD Programs Foundation of Ministry of Education of China(Grant No.20106101110008)the United Funds of NSFC and Henan for Talent Training(Grant No.U1204104)
文摘The inhomogeneous nonlinear diffusion equation is studied by invariant subspace and condi- tional Lie=Bgcklund symmetry methods. It is shown that the equations admit a class of invariant subspaces governed by the nonlinear ordinary differential equations, which is equivalent to a kind of higher=order conditional Lie-B^icklund symmetries of the equations. As a consequence, a number of new solutions to the inhomogeneous nonlinear diffusion equations are constructed explicitly or reduced to solving finite-dimensional dynamical sys- tems.
基金Supported by the National Natural Science Foundation of China under Grant No.10671156the Natural Science Foundation of Shaanxi Province of China under Grant No.SJ08A05
文摘As an extension to the derivative-dependent functional variable separation approach, the approximate derivative-dependent functional variable separation approach is proposed, and it is applied to study the generalized diffusion equations with perturbation. Complete classification of these perturbed equations which admit approximate derivative-dependent functional separable solutions is obtained. As a result, the corresponding approximate derivative-dependent functional separable solutions to some resulting perturbed equations are derived by way of examples.