The promoter fragments of wheat GstA1 and potato Gst1 have been amplified by PCR, cloned and fused respectively to the minimal promoter sequence of rice actin gene (Act1)) and its 5’ untranslated leader sequence toge...The promoter fragments of wheat GstA1 and potato Gst1 have been amplified by PCR, cloned and fused respectively to the minimal promoter sequence of rice actin gene (Act1)) and its 5’ untranslated leader sequence together with GUS. The constructs with 2 chimeric promoters (WGA and PGA) have been transferred into rice in order to analyze their inducibility patterns in transgenic rice plants. The results show that: WGA and PGA are both inducible by elicitors of Pyricularia oryzae in transgenic rice cells; the intron I of rice Act1 gene is important for the heterogenic expression of monocot and dicot promoter elements in rice; and the Act1 minimal promoter and its 5’untranslated leader sequence produced low level background expression in rice.展开更多
The strategy of the two-component system, composed of Barnase and Barstar which encode RNase and a specific inhibitor to the RNase respectively, is adopted to obtain transgenic rice resistant to rice fungal blast dise...The strategy of the two-component system, composed of Barnase and Barstar which encode RNase and a specific inhibitor to the RNase respectively, is adopted to obtain transgenic rice resistant to rice fungal blast disease. In this study, two chimeric promoters, induced by rice blast fungus pathogen (Magnaporthe grisea), are fused with Barnase respectively to construct two plant expression vec-tors, pWBNBS and pPBNBS together with the Barstar driven by CaMV 35S promoter. The resistance of the transgenic rice lines to rice blast fungus disease and rice blight disease are evaluated. The results show that (1) the expression of Barnase is induced in rice leaves when inoculated with the spores of Magnaporthe grisea; (2) the induced expression level of Barnase surpasses the level of Barstar, which elicits a similar hypersensitive response (HR) in the leaves, and the transgenic plant shows high resistance to the rice fungal blast disease; and (3) transgenic rice plants also show obvious re-sistance to rice bacterial blight disease. Taken together, these results suggest that the transgenic rice plants harboring this two-component system acquire relatively broad spectrum resistance against pathogens, especially high resistance to rice fungal pathogen.展开更多
文摘The promoter fragments of wheat GstA1 and potato Gst1 have been amplified by PCR, cloned and fused respectively to the minimal promoter sequence of rice actin gene (Act1)) and its 5’ untranslated leader sequence together with GUS. The constructs with 2 chimeric promoters (WGA and PGA) have been transferred into rice in order to analyze their inducibility patterns in transgenic rice plants. The results show that: WGA and PGA are both inducible by elicitors of Pyricularia oryzae in transgenic rice cells; the intron I of rice Act1 gene is important for the heterogenic expression of monocot and dicot promoter elements in rice; and the Act1 minimal promoter and its 5’untranslated leader sequence produced low level background expression in rice.
基金supported by the National Hi-Tech Program of China(Grant No.101-01-02-02 to Qu).
文摘The strategy of the two-component system, composed of Barnase and Barstar which encode RNase and a specific inhibitor to the RNase respectively, is adopted to obtain transgenic rice resistant to rice fungal blast disease. In this study, two chimeric promoters, induced by rice blast fungus pathogen (Magnaporthe grisea), are fused with Barnase respectively to construct two plant expression vec-tors, pWBNBS and pPBNBS together with the Barstar driven by CaMV 35S promoter. The resistance of the transgenic rice lines to rice blast fungus disease and rice blight disease are evaluated. The results show that (1) the expression of Barnase is induced in rice leaves when inoculated with the spores of Magnaporthe grisea; (2) the induced expression level of Barnase surpasses the level of Barstar, which elicits a similar hypersensitive response (HR) in the leaves, and the transgenic plant shows high resistance to the rice fungal blast disease; and (3) transgenic rice plants also show obvious re-sistance to rice bacterial blight disease. Taken together, these results suggest that the transgenic rice plants harboring this two-component system acquire relatively broad spectrum resistance against pathogens, especially high resistance to rice fungal pathogen.