A three-dimensional model was established by the discrete element method (DEM) to analyze the flow and segregation of particles in a charging process in detail. The simulation results of the burden falling trajector...A three-dimensional model was established by the discrete element method (DEM) to analyze the flow and segregation of particles in a charging process in detail. The simulation results of the burden falling trajectory obtained by the model were compared with the industrial charging measurements to validate the applicability of the model. The flow behavior of particles from the weighing hopper to the top layer of a blast furnace and the heaping behavior were analyzed using this model. A radial segregation index (RSI) was used to evaluate the extent of the size segregation in the charging process. In addition, the influence of the chute inclination angle on the size segregation and burden profile during the charging process was investigated.展开更多
A method of size exclusion chromatography coupled with ultraviolet spectrophotometry and off-line graphite furnace atomic absorption spectrometry was developed to assess the complexation properties of iron(Fe) and h...A method of size exclusion chromatography coupled with ultraviolet spectrophotometry and off-line graphite furnace atomic absorption spectrometry was developed to assess the complexation properties of iron(Fe) and humic acid(HA) in a water environment. The factors affecting the complexation of Fe and HA, such as ionic strength, pH, temperature and UV radiation, were investigated. The Fe–HA complex residence time was also studied. Experimental results showed that pH could influence the deprotonation of HA and hydrolysis of Fe, and thus affected the complexation of Fe and HA. The complexation was greatly disrupted by the presence of NaCl. Temperature had some influence on the complexation. The yield of Fe–HA complexes showed a small decrease at high levels of UV radiation, but the effect of UV radiation on Fe–HA complex formation at natural levels could be neglected. It took about 10 hr for the complexation to reach equilibrium, and the Fe–HA complex residence time was about 20 hr.Complexation of Fe and HA reached a maximum level under the conditions of pH 6, very low ionic strength, in the dark and at a water temperature of about 25°C, for 10 hr. It was suggested that the Fe–HA complex could form mainly in freshwater bodies and reach high levels in the warm season with mild sunlight radiation. With changing environmental parameters, such as at lower temperature in winter or higher pH and ionic strength in an estuary, the concentration of the Fe–HA complex would decrease.展开更多
基金the National Key Technology R&D Program in the 12th Five Year Plan of China(No.2011BAC01B02)for the financial support
文摘A three-dimensional model was established by the discrete element method (DEM) to analyze the flow and segregation of particles in a charging process in detail. The simulation results of the burden falling trajectory obtained by the model were compared with the industrial charging measurements to validate the applicability of the model. The flow behavior of particles from the weighing hopper to the top layer of a blast furnace and the heaping behavior were analyzed using this model. A radial segregation index (RSI) was used to evaluate the extent of the size segregation in the charging process. In addition, the influence of the chute inclination angle on the size segregation and burden profile during the charging process was investigated.
基金supported by the National Natural Science Foundation of China (No. 41176075)
文摘A method of size exclusion chromatography coupled with ultraviolet spectrophotometry and off-line graphite furnace atomic absorption spectrometry was developed to assess the complexation properties of iron(Fe) and humic acid(HA) in a water environment. The factors affecting the complexation of Fe and HA, such as ionic strength, pH, temperature and UV radiation, were investigated. The Fe–HA complex residence time was also studied. Experimental results showed that pH could influence the deprotonation of HA and hydrolysis of Fe, and thus affected the complexation of Fe and HA. The complexation was greatly disrupted by the presence of NaCl. Temperature had some influence on the complexation. The yield of Fe–HA complexes showed a small decrease at high levels of UV radiation, but the effect of UV radiation on Fe–HA complex formation at natural levels could be neglected. It took about 10 hr for the complexation to reach equilibrium, and the Fe–HA complex residence time was about 20 hr.Complexation of Fe and HA reached a maximum level under the conditions of pH 6, very low ionic strength, in the dark and at a water temperature of about 25°C, for 10 hr. It was suggested that the Fe–HA complex could form mainly in freshwater bodies and reach high levels in the warm season with mild sunlight radiation. With changing environmental parameters, such as at lower temperature in winter or higher pH and ionic strength in an estuary, the concentration of the Fe–HA complex would decrease.