The operating room is a unique environment where surgery exposes patients to non-physiological changes that can compromise lung mechanics.Therefore,raising clinicians’awareness of the potential risk of ventilator-ind...The operating room is a unique environment where surgery exposes patients to non-physiological changes that can compromise lung mechanics.Therefore,raising clinicians’awareness of the potential risk of ventilator-induced lung injury(VILI)is mandatory.Driving pressure is a useful tool for reducing lung complications in patients with acute respiratory distress syndrome and those undergoing elective surgery.Driving pressure has been most extensively studied in the context of single-lung ventilation during thoracic surgery.However,the awareness of association of VILI risk and patient positioning(prone,beach-chair,parkbench)and type of surgery must be raised.展开更多
This paper analyzes the control mechanism of coal and gas outbursts and proposes the concept of an effective pressure relief protection range, based on the stress relief of the underlying coal-rock mass and the develo...This paper analyzes the control mechanism of coal and gas outbursts and proposes the concept of an effective pressure relief protection range, based on the stress relief of the underlying coal-rock mass and the development of a plastic zone. Also this study developed a stress change and fracture development model of the underlying coal-rock mass. In addition, the stress and depth of fracture of any point in the floor were deduced with the application of Maple Calculation Software. The specific engineering parameters of the Pingdingshan No. 12 colliery were applied to determine the relationship between the depth of fracture in the floor and the mining height. The pressure-relief principle of the underlying coal-rock mass was analyzed while varying the mining height of the upper protective seam. The findings indicate that as the depth of fracture in the floor increases, the underlying coal-rock mass experiences a limited amount of pressure relief, and the pressure relief protection range becomes narrower.Additionally, the stress distribution evolves from a ‘‘U" shape into a ‘‘V" shape. A 2.0 m mining height of protective seam situates the outburst-prone seam, Ji_(15), within the effective pressure relief protection range. The fracture development and stress-relief ratio rises to 88%, ensuring the pressure-relief effect as well as economic benefits. The measurement data show that: after mining the upper protective seam, the gas pressure of Ji_(15) dropped from 1.78 to 0.35 MPa, demonstrating agreement between the engineering application and the theoretical calculation.展开更多
The characteristics of low pressure plasma produced by a gas discharges lie in thatthe energy of the electrons are much higher than that of the heavy particles in the system. Inthis paperl the low-pressure plasma trea...The characteristics of low pressure plasma produced by a gas discharges lie in thatthe energy of the electrons are much higher than that of the heavy particles in the system. Inthis paperl the low-pressure plasma treatment technology for the environmental contaminantswas synthetically studied, and the reaction processing and mechanism between the low-pressureplasma and the environmental contaminants were theoretically analyzed. At last, the prospectsand existing problems on the application of low-pressure plasma in the field of environmentalprotection were discussed.展开更多
Numerical simulations and field tests were used to investigate the changes in ground stress and deformation of, and gas flow from, a protected coal seam under which an extra-thin coal seam was drilled. The geological ...Numerical simulations and field tests were used to investigate the changes in ground stress and deformation of, and gas flow from, a protected coal seam under which an extra-thin coal seam was drilled. The geological conditions were: 0.5 meter mining height, 18.5 meter coal seam spacing and a hard limestone/fine sandstone inter-stratum. For these conditions we conclude: 1) the overlying coal-rock mass bends and sinks without the appearance of a caving zone, and 2) the protected coal seam is in the bending zone and undergoes expansion deformation in the stress-relaxed area. The deformation was 12 mm and the relative defor- mation was 0.15%. As mining proceeds, deformation in the protected layer begins as compression, then becomes a rapid expansion and, finally, reaches a stable value. A large number of bed separation crannies are created in the stress-relaxed area and the permeability coefficient of the coal seam was increased 403 fold. Grid penetration boreholes were evenly drilled toward the protected coal seam to affect pressure relief and gas drainage. This made the gas pressure decrease from 0.75 to 0.15 MPa, the gas content decrease from 13 to 4.66 m3/t and the gas drainage reach 64%.展开更多
In order to understand the effect of mining height and floor lithology at the upper protective layer face on the pressure relief of protected coal seams, this paper uses a numerical simulation method to model the pres...In order to understand the effect of mining height and floor lithology at the upper protective layer face on the pressure relief of protected coal seams, this paper uses a numerical simulation method to model the pressure changes at protected coal seam during mining upper protective layer. The results show that the taller the mining height at the upper protective layer face, the greater the protection on protected coal seam due to the higher level of pressure release; the upper protective layer face with hard rock floor impedes the pressure release at the protected coal seam, which affects the overall effect of the pressure release at protected coal seam using the protective layer mining method.展开更多
The coal-gas existing condition was ameliorated in the coal seams prone to coal-gas outburst adopting the mining method of protective strata.The gas volume and the gas pressure were reduced synchronously in the protec...The coal-gas existing condition was ameliorated in the coal seams prone to coal-gas outburst adopting the mining method of protective strata.The gas volume and the gas pressure were reduced synchronously in the protected coal seam,and the coal seam of high permeability prone to the coal-gas outburst was changed into that of low perme- ability with no proneness to the coal-gas outburst.The D_(15)coal seam was treated as the protective strata,and the D_(16-17)coal seam was treated as the protected strata in the Fifth coal mine in the Pingdingshan Coal Mining Group.The distance between the two coal seams was 5 m averagely,clarified into the extreme short-range protective strata.The numerical analysis was based on the theory of the porous media flow with the finite ele- ment method.The gas flow process and the change mechanism of the coal-gas pressure were analyzed in the process of mining the protective strata.展开更多
With the increase in mining depth, the danger of coal and gas outbursts increases.In order to drain coal gas effectively and to eliminate the risk of coal and gas outbursts, we used a specific number of penetration bo...With the increase in mining depth, the danger of coal and gas outbursts increases.In order to drain coal gas effectively and to eliminate the risk of coal and gas outbursts, we used a specific number of penetration boreholes for draining of pressure relief gas.Based on the principle of overlying strata movement, deformation and pressure relief, a good effect of gas drainage was obtained.The practice in the Panyi coal mine has shown that, after mining the C11coal seam as the protective layer, the relative expansion deformation value of the protected layer C13 reached 2.63%, The permeability coefficient increased 2880 times, the gas drainage rate of the C13 coal seam increased to more than 60%, the amount of gas was reduced from 13.0 to 5.2 m3/t and the gas pressure declined from 4.4 to 0.4 MPa, which caused the danger the outbursts in the coal seams to be eliminated.The result was that we achieved a safe and highly efficient mining operation of the C13 coal seam.展开更多
The basic equations for computing the volume of gas storage tank were derived from the principles of attenuating water hammer pressure. Verifications using experiments indicate that the proposed equation can provide a...The basic equations for computing the volume of gas storage tank were derived from the principles of attenuating water hammer pressure. Verifications using experiments indicate that the proposed equation can provide a fare precision in the predictions. By using the model of solid liquid two phase flow, the gas storage tank, pressure relief valves and slow closure reverse control valves were compared with practical engineering problems, and the functions of gas storage tank in attenuating water hammer pressure were further investigated. [展开更多
The propagation of the high-power microwave(HPM) with a frequency of 6 GHz in the lowpressure argon plasma was studied by the method of fluid approximation.The two-dimensional transmission model was built based on t...The propagation of the high-power microwave(HPM) with a frequency of 6 GHz in the lowpressure argon plasma was studied by the method of fluid approximation.The two-dimensional transmission model was built based on the wave equation,the electron drift-diffusion equations and the heavy species transport equations,which were solved by means of COMSOL Multiphysics software.The simulation results showed that the propagation characteristic of the HPM was closely related to the average electron density of the plasma.The attenuation of the transmitted wave increased nonlinearly with the electron density.Specifically,the growth of the attenuation slowed down as the electron density increased uniformly.In addition,the concrete transmission process of the HPM wave in the low-pressure argon plasma was given.展开更多
文摘The operating room is a unique environment where surgery exposes patients to non-physiological changes that can compromise lung mechanics.Therefore,raising clinicians’awareness of the potential risk of ventilator-induced lung injury(VILI)is mandatory.Driving pressure is a useful tool for reducing lung complications in patients with acute respiratory distress syndrome and those undergoing elective surgery.Driving pressure has been most extensively studied in the context of single-lung ventilation during thoracic surgery.However,the awareness of association of VILI risk and patient positioning(prone,beach-chair,parkbench)and type of surgery must be raised.
基金supported by the Foundation for Distinguished professor of Jiangsu Provincethe Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No.51421003)
文摘This paper analyzes the control mechanism of coal and gas outbursts and proposes the concept of an effective pressure relief protection range, based on the stress relief of the underlying coal-rock mass and the development of a plastic zone. Also this study developed a stress change and fracture development model of the underlying coal-rock mass. In addition, the stress and depth of fracture of any point in the floor were deduced with the application of Maple Calculation Software. The specific engineering parameters of the Pingdingshan No. 12 colliery were applied to determine the relationship between the depth of fracture in the floor and the mining height. The pressure-relief principle of the underlying coal-rock mass was analyzed while varying the mining height of the upper protective seam. The findings indicate that as the depth of fracture in the floor increases, the underlying coal-rock mass experiences a limited amount of pressure relief, and the pressure relief protection range becomes narrower.Additionally, the stress distribution evolves from a ‘‘U" shape into a ‘‘V" shape. A 2.0 m mining height of protective seam situates the outburst-prone seam, Ji_(15), within the effective pressure relief protection range. The fracture development and stress-relief ratio rises to 88%, ensuring the pressure-relief effect as well as economic benefits. The measurement data show that: after mining the upper protective seam, the gas pressure of Ji_(15) dropped from 1.78 to 0.35 MPa, demonstrating agreement between the engineering application and the theoretical calculation.
文摘The characteristics of low pressure plasma produced by a gas discharges lie in thatthe energy of the electrons are much higher than that of the heavy particles in the system. Inthis paperl the low-pressure plasma treatment technology for the environmental contaminantswas synthetically studied, and the reaction processing and mechanism between the low-pressureplasma and the environmental contaminants were theoretically analyzed. At last, the prospectsand existing problems on the application of low-pressure plasma in the field of environmentalprotection were discussed.
基金Projects 2005CB221503 supported by the National Basic Research Program of China70533050 and 50674089 by the National Natural Science Foundation of China2005BA813B-3-06 by the National Tenth Five-Year Key Scientific and Technological Project
文摘Numerical simulations and field tests were used to investigate the changes in ground stress and deformation of, and gas flow from, a protected coal seam under which an extra-thin coal seam was drilled. The geological conditions were: 0.5 meter mining height, 18.5 meter coal seam spacing and a hard limestone/fine sandstone inter-stratum. For these conditions we conclude: 1) the overlying coal-rock mass bends and sinks without the appearance of a caving zone, and 2) the protected coal seam is in the bending zone and undergoes expansion deformation in the stress-relaxed area. The deformation was 12 mm and the relative defor- mation was 0.15%. As mining proceeds, deformation in the protected layer begins as compression, then becomes a rapid expansion and, finally, reaches a stable value. A large number of bed separation crannies are created in the stress-relaxed area and the permeability coefficient of the coal seam was increased 403 fold. Grid penetration boreholes were evenly drilled toward the protected coal seam to affect pressure relief and gas drainage. This made the gas pressure decrease from 0.75 to 0.15 MPa, the gas content decrease from 13 to 4.66 m3/t and the gas drainage reach 64%.
文摘In order to understand the effect of mining height and floor lithology at the upper protective layer face on the pressure relief of protected coal seams, this paper uses a numerical simulation method to model the pressure changes at protected coal seam during mining upper protective layer. The results show that the taller the mining height at the upper protective layer face, the greater the protection on protected coal seam due to the higher level of pressure release; the upper protective layer face with hard rock floor impedes the pressure release at the protected coal seam, which affects the overall effect of the pressure release at protected coal seam using the protective layer mining method.
基金the Grants of National Scientific Funds of Control Mechanism of Geologic Hazards Induced by Coal-gas(50534070)
文摘The coal-gas existing condition was ameliorated in the coal seams prone to coal-gas outburst adopting the mining method of protective strata.The gas volume and the gas pressure were reduced synchronously in the protected coal seam,and the coal seam of high permeability prone to the coal-gas outburst was changed into that of low perme- ability with no proneness to the coal-gas outburst.The D_(15)coal seam was treated as the protective strata,and the D_(16-17)coal seam was treated as the protected strata in the Fifth coal mine in the Pingdingshan Coal Mining Group.The distance between the two coal seams was 5 m averagely,clarified into the extreme short-range protective strata.The numerical analysis was based on the theory of the porous media flow with the finite ele- ment method.The gas flow process and the change mechanism of the coal-gas pressure were analyzed in the process of mining the protective strata.
基金Projects 2005CB221503 supported by the National Basic Research Program of China70533050 and 50674089 by the National Natural Science Foundationof China
文摘With the increase in mining depth, the danger of coal and gas outbursts increases.In order to drain coal gas effectively and to eliminate the risk of coal and gas outbursts, we used a specific number of penetration boreholes for draining of pressure relief gas.Based on the principle of overlying strata movement, deformation and pressure relief, a good effect of gas drainage was obtained.The practice in the Panyi coal mine has shown that, after mining the C11coal seam as the protective layer, the relative expansion deformation value of the protected layer C13 reached 2.63%, The permeability coefficient increased 2880 times, the gas drainage rate of the C13 coal seam increased to more than 60%, the amount of gas was reduced from 13.0 to 5.2 m3/t and the gas pressure declined from 4.4 to 0.4 MPa, which caused the danger the outbursts in the coal seams to be eliminated.The result was that we achieved a safe and highly efficient mining operation of the C13 coal seam.
文摘The basic equations for computing the volume of gas storage tank were derived from the principles of attenuating water hammer pressure. Verifications using experiments indicate that the proposed equation can provide a fare precision in the predictions. By using the model of solid liquid two phase flow, the gas storage tank, pressure relief valves and slow closure reverse control valves were compared with practical engineering problems, and the functions of gas storage tank in attenuating water hammer pressure were further investigated. [
基金supported by National High Technology Research and Development Program of China(Grant No.2015AA8016029A)
文摘The propagation of the high-power microwave(HPM) with a frequency of 6 GHz in the lowpressure argon plasma was studied by the method of fluid approximation.The two-dimensional transmission model was built based on the wave equation,the electron drift-diffusion equations and the heavy species transport equations,which were solved by means of COMSOL Multiphysics software.The simulation results showed that the propagation characteristic of the HPM was closely related to the average electron density of the plasma.The attenuation of the transmitted wave increased nonlinearly with the electron density.Specifically,the growth of the attenuation slowed down as the electron density increased uniformly.In addition,the concrete transmission process of the HPM wave in the low-pressure argon plasma was given.