期刊文献+
共找到110篇文章
< 1 2 6 >
每页显示 20 50 100
Multimodality Medical Image Fusion Based on Pixel Significance with Edge-Preserving Processing for Clinical Applications
1
作者 Bhawna Goyal Ayush Dogra +4 位作者 Dawa Chyophel Lepcha Rajesh Singh Hemant Sharma Ahmed Alkhayyat Manob Jyoti Saikia 《Computers, Materials & Continua》 SCIE EI 2024年第3期4317-4342,共26页
Multimodal medical image fusion has attained immense popularity in recent years due to its robust technology for clinical diagnosis.It fuses multiple images into a single image to improve the quality of images by reta... Multimodal medical image fusion has attained immense popularity in recent years due to its robust technology for clinical diagnosis.It fuses multiple images into a single image to improve the quality of images by retaining significant information and aiding diagnostic practitioners in diagnosing and treating many diseases.However,recent image fusion techniques have encountered several challenges,including fusion artifacts,algorithm complexity,and high computing costs.To solve these problems,this study presents a novel medical image fusion strategy by combining the benefits of pixel significance with edge-preserving processing to achieve the best fusion performance.First,the method employs a cross-bilateral filter(CBF)that utilizes one image to determine the kernel and the other for filtering,and vice versa,by considering both geometric closeness and the gray-level similarities of neighboring pixels of the images without smoothing edges.The outputs of CBF are then subtracted from the original images to obtain detailed images.It further proposes to use edge-preserving processing that combines linear lowpass filtering with a non-linear technique that enables the selection of relevant regions in detailed images while maintaining structural properties.These regions are selected using morphologically processed linear filter residuals to identify the significant regions with high-amplitude edges and adequate size.The outputs of low-pass filtering are fused with meaningfully restored regions to reconstruct the original shape of the edges.In addition,weight computations are performed using these reconstructed images,and these weights are then fused with the original input images to produce a final fusion result by estimating the strength of horizontal and vertical details.Numerous standard quality evaluation metrics with complementary properties are used for comparison with existing,well-known algorithms objectively to validate the fusion results.Experimental results from the proposed research article exhibit superior performance compared to other competing techniques in the case of both qualitative and quantitative evaluation.In addition,the proposed method advocates less computational complexity and execution time while improving diagnostic computing accuracy.Nevertheless,due to the lower complexity of the fusion algorithm,the efficiency of fusion methods is high in practical applications.The results reveal that the proposed method exceeds the latest state-of-the-art methods in terms of providing detailed information,edge contour,and overall contrast. 展开更多
关键词 Image fusion fractal data analysis BIOMEDICAL diseases research multiresolution analysis numerical analysis
下载PDF
Image Fusion Using Wavelet Transformation and XGboost Algorithm
2
作者 Shahid Naseem Tariq Mahmood +4 位作者 Amjad Rehman Khan Umer Farooq Samra Nawazish Faten S.Alamri Tanzila Saba 《Computers, Materials & Continua》 SCIE EI 2024年第4期801-817,共17页
Recently,there have been several uses for digital image processing.Image fusion has become a prominent application in the domain of imaging processing.To create one final image that provesmore informative and helpful ... Recently,there have been several uses for digital image processing.Image fusion has become a prominent application in the domain of imaging processing.To create one final image that provesmore informative and helpful compared to the original input images,image fusion merges two or more initial images of the same item.Image fusion aims to produce,enhance,and transform significant elements of the source images into combined images for the sake of human visual perception.Image fusion is commonly employed for feature extraction in smart robots,clinical imaging,audiovisual camera integration,manufacturing process monitoring,electronic circuit design,advanced device diagnostics,and intelligent assembly line robots,with image quality varying depending on application.The research paper presents various methods for merging images in spatial and frequency domains,including a blend of stable and curvelet transformations,everageMax-Min,weighted principal component analysis(PCA),HIS(Hue,Intensity,Saturation),wavelet transform,discrete cosine transform(DCT),dual-tree Complex Wavelet Transform(CWT),and multiple wavelet transform.Image fusion methods integrate data from several source images of an identical target,thereby enhancing information in an extremely efficient manner.More precisely,in imaging techniques,the depth of field constraint precludes images from focusing on every object,leading to the exclusion of certain characteristics.To tackle thess challanges,a very efficient multi-focus wavelet decomposition and recompositionmethod is proposed.The use of these wavelet decomposition and recomposition techniques enables this method to make use of existing optimized wavelet code and filter choice.The simulated outcomes provide evidence that the suggested approach initially extracts particular characteristics from images in order to accurately reflect the level of clarity portrayed in the original images.This study enhances the performance of the eXtreme Gradient Boosting(XGBoost)algorithm in detecting brain malignancies with greater precision through the integration of computational image analysis and feature selection.The performance of images is improved by segmenting them employing the K-Means algorithm.The segmentation method aids in identifying specific regions of interest,using Particle Swarm Optimization(PCA)for trait selection and XGBoost for data classification.Extensive trials confirm the model’s exceptional visual performance,achieving an accuracy of up to 97.067%and providing good objective indicators. 展开更多
关键词 Image fusion max-min average CWT XGBoost DCT inclusive innovations spatial and frequency domain
下载PDF
Infrared and Visible Image Fusion Based on Res2Net-Transformer Automatic Encoding and Decoding
3
作者 Chunming Wu Wukai Liu Xin Ma 《Computers, Materials & Continua》 SCIE EI 2024年第4期1441-1461,共21页
A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The ne... A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The networkcomprises an encoder module, fusion layer, decoder module, and edge improvementmodule. The encoder moduleutilizes an enhanced Inception module for shallow feature extraction, then combines Res2Net and Transformerto achieve deep-level co-extraction of local and global features from the original picture. An edge enhancementmodule (EEM) is created to extract significant edge features. A modal maximum difference fusion strategy isintroduced to enhance the adaptive representation of information in various regions of the source image, therebyenhancing the contrast of the fused image. The encoder and the EEM module extract features, which are thencombined in the fusion layer to create a fused picture using the decoder. Three datasets were chosen to test thealgorithmproposed in this paper. The results of the experiments demonstrate that the network effectively preservesbackground and detail information in both infrared and visible images, yielding superior outcomes in subjectiveand objective evaluations. 展开更多
关键词 Image fusion Res2Net-Transformer infrared image visible image
下载PDF
Preoperative liver functional volumetry performed by 3D-99mTc-GSA scintigraphy/vascular fusion imaging using SYNAPSE VINCENT: a preliminary study 被引量:1
4
作者 Hiroshi Yoshida Hiroshi Makino +6 位作者 Tadashi Yokoyama Hiroshi Maruyama Atsushi Hirakata Junji Ueda Yasuhiro Mamada Nobuhiko Taniai Eiji Uchida 《Hepatoma Research》 2016年第1期187-192,共6页
Aim:The present study was designed to evaluate the feasibility of preoperative liver functional volumetry performed by 3D-technetium-99m-diethylenetriaminepentaacetic acid-galactosyl-human serum albumin(99mTc-GSA)scin... Aim:The present study was designed to evaluate the feasibility of preoperative liver functional volumetry performed by 3D-technetium-99m-diethylenetriaminepentaacetic acid-galactosyl-human serum albumin(99mTc-GSA)scintigraphy/vascular fusion imaging using SYNAPSE VINCENT and to examine the discrepancy between conventional and functional volumetry.Methods:The study group comprised 15 patients who underwent preoperative 3-dimensional(3D)-99mTc-GSA scintigraphy/vascular fusion imaging using SYNAPSE VINCENT software before hepatectomy between July 2014 and August 2015.The diagnosis was hepatocellular carcinoma(n=4),metastatic liver tumor(n=10),or intrahepatic cholangiocarcinoma(n=1).Right hepatectomy was performed in 2 patients,left hepatectomy in 3 patients,right posterior sectionectomy in 3 patients,segmentectomy in 2 patients,and partial hepatectomy in 4 patients.99mTc-GSA scintigraphy and computed tomography(CT)were performed to construct 3D-99mTc-GSA scintigraphy/vascular fused images.The conventional volume ratio of the planned resection region without tumor(%CT),and the functional volume ratio of the planned resection region without tumor(%GSA)were calculated.The discrepancy ratio was calculated as follows:discrepancy ratio=100-%GSA/%CT×100(%).Results:The%GSA(17.9±16.7%)was significantly lower than the%CT(21.5±17.6%)(P<0.036).In all except 2 patients,the%GSA was lower than the%CT.The discrepancy ratio ranged from-4%to 75%(median,20.7%).Conclusion:3D-99mTc-GSA scintigraphy/vascular fused images constructed using SYNAPSE VINCENT were useful for noninvasively performing functional liver volumetry in patients scheduled to undergo various patterns of hepatectomy.In planned resection regions without tumor,the functional volume ratio was about 20%lower than the conventional volume ratio. 展开更多
关键词 Functional volumetry 99m-diethylenetriaminepentaacetic acid-galactosyl-human serum albumin SYNAPSE VINCENT fusion image 3-dimensional computed tomography
原文传递
Medical Image Fusion Based on Anisotropic Diffusion and Non-Subsampled Contourlet Transform 被引量:1
5
作者 Bhawna Goyal Ayush Dogra +3 位作者 Rahul Khoond Dawa Chyophel Lepcha Vishal Goyal Steven LFernandes 《Computers, Materials & Continua》 SCIE EI 2023年第7期311-327,共17页
The synthesis of visual information from multiple medical imaging inputs to a single fused image without any loss of detail and distortion is known as multimodal medical image fusion.It improves the quality of biomedi... The synthesis of visual information from multiple medical imaging inputs to a single fused image without any loss of detail and distortion is known as multimodal medical image fusion.It improves the quality of biomedical images by preserving detailed features to advance the clinical utility of medical imaging meant for the analysis and treatment of medical disor-ders.This study develops a novel approach to fuse multimodal medical images utilizing anisotropic diffusion(AD)and non-subsampled contourlet transform(NSCT).First,the method employs anisotropic diffusion for decomposing input images to their base and detail layers to coarsely split two features of input images such as structural and textural information.The detail and base layers are further combined utilizing a sum-based fusion rule which maximizes noise filtering contrast level by effectively preserving most of the structural and textural details.NSCT is utilized to further decompose these images into their low and high-frequency coefficients.These coefficients are then combined utilizing the principal component analysis/Karhunen-Loeve(PCA/KL)based fusion rule independently by substantiating eigenfeature reinforcement in the fusion results.An NSCT-based multiresolution analysis is performed on the combined salient feature information and the contrast-enhanced fusion coefficients.Finally,an inverse NSCT is applied to each coef-ficient to produce the final fusion result.Experimental results demonstrate an advantage of the proposed technique using a publicly accessible dataset and conducted comparative studies on three pairs of medical images from different modalities and health.Our approach offers better visual and robust performance with better objective measurements for research development since it excellently preserves significant salient features and precision without producing abnormal information in the case of qualitative and quantitative analysis. 展开更多
关键词 Anisotropic diffusion BIOMEDICAL medical HEALTH DISEASES adversarial attacks image fusion research and development PRECISION
下载PDF
An Efficient Medical Image Deep Fusion Model Based on Convolutional Neural Networks
6
作者 Walid El-Shafai Noha A.El-Hag +5 位作者 Ahmed Sedik Ghada Elbanby Fathi E.Abd El-Samie Naglaa F.Soliman Hussah Nasser AlEisa Mohammed E.Abdel Samea 《Computers, Materials & Continua》 SCIE EI 2023年第2期2905-2925,共21页
Medical image fusion is considered the best method for obtaining one image with rich details for efficient medical diagnosis and therapy.Deep learning provides a high performance for several medical image analysis app... Medical image fusion is considered the best method for obtaining one image with rich details for efficient medical diagnosis and therapy.Deep learning provides a high performance for several medical image analysis applications.This paper proposes a deep learning model for the medical image fusion process.This model depends on Convolutional Neural Network(CNN).The basic idea of the proposed model is to extract features from both CT and MR images.Then,an additional process is executed on the extracted features.After that,the fused feature map is reconstructed to obtain the resulting fused image.Finally,the quality of the resulting fused image is enhanced by various enhancement techniques such as Histogram Matching(HM),Histogram Equalization(HE),fuzzy technique,fuzzy type,and Contrast Limited Histogram Equalization(CLAHE).The performance of the proposed fusion-based CNN model is measured by various metrics of the fusion and enhancement quality.Different realistic datasets of different modalities and diseases are tested and implemented.Also,real datasets are tested in the simulation analysis. 展开更多
关键词 Image fusion CNN deep learning feature extraction evaluation metrics medical diagnosis
下载PDF
Combining Entropy Optimization and Sobel Operator for Medical Image Fusion
7
作者 Nguyen Tu Trung Tran Thi Ngan +1 位作者 Tran Manh Tuan To Huu Nguyen 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期535-544,共10页
Fusing medical images is a topic of interest in processing medical images.This is achieved to through fusing information from multimodality images for the purpose of increasing the clinical diagnosis accuracy.This fus... Fusing medical images is a topic of interest in processing medical images.This is achieved to through fusing information from multimodality images for the purpose of increasing the clinical diagnosis accuracy.This fusion aims to improve the image quality and preserve the specific features.The methods of medical image fusion generally use knowledge in many differentfields such as clinical medicine,computer vision,digital imaging,machine learning,pattern recognition to fuse different medical images.There are two main approaches in fusing image,including spatial domain approach and transform domain approachs.This paper proposes a new algorithm to fusion multimodal images.This algorithm is based on Entropy optimization and the Sobel operator.Wavelet transform is used to split the input images into components over the low and high frequency domains.Then,two fusion rules are used for obtaining the fusing images.Thefirst rule,based on the Sobel operator,is used for high frequency components.The second rule,based on Entropy optimization by using Particle Swarm Optimization(PSO)algorithm,is used for low frequency components.Proposed algorithm is implemented on the images related to central nervous system diseases.The experimental results of the paper show that the proposed algorithm is better than some recent methods in term of brightness level,the contrast,the entropy,the gradient and visual informationfidelity for fusion(VIFF),Feature Mutual Information(FMI)indices. 展开更多
关键词 Medical image fusion WAVELET entropy optimization PSO Sobel operator
下载PDF
Visual Enhancement of Underwater Images Using Transmission Estimation and Multi-Scale Fusion
8
作者 R.Vijay Anandh S.Rukmani Devi 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期1897-1910,共14页
The demand for the exploration of ocean resources is increasing exponentially.Underwater image data plays a significant role in many research areas.Despite this,the visual quality of underwater images is degraded beca... The demand for the exploration of ocean resources is increasing exponentially.Underwater image data plays a significant role in many research areas.Despite this,the visual quality of underwater images is degraded because of two main factors namely,backscattering and attenuation.Therefore,visual enhancement has become an essential process to recover the required data from the images.Many algorithms had been proposed in a decade for improving the quality of images.This paper aims to propose a single image enhancement technique without the use of any external datasets.For that,the degraded images are subjected to two main processes namely,color correction and image fusion.Initially,veiling light and transmission light is estimated tofind the color required for correction.Veiling light refers to unwanted light,whereas transmission light refers to the required light for color correction.These estimated outputs are applied in the scene recovery equation.The image obtained from color correction is subjected to a fusion process where the image is categorized into two versions and applied to white balance and contrast enhancement techniques.The resultants are divided into three weight maps namely,luminance,saliency,chromaticity and fused using the Laplacian pyramid.The results obtained are graphically compared with their input data using RGB Histogram plot.Finally,image quality is measured and tabulated using underwater image quality measures. 展开更多
关键词 Underwater image BACKSCATTERING ATTENUATION image fusion veiling light white balance laplacian pyramid
下载PDF
Brain Tumor Classification Using Image Fusion and EFPA-SVM Classifier
9
作者 P.P.Fathimathul Rajeena R.Sivakumar 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期2837-2855,共19页
An accurate and early diagnosis of brain tumors based on medical ima-ging modalities is of great interest because brain tumors are a harmful threat to a person’s health worldwide.Several medical imaging techniques ha... An accurate and early diagnosis of brain tumors based on medical ima-ging modalities is of great interest because brain tumors are a harmful threat to a person’s health worldwide.Several medical imaging techniques have been used to analyze brain tumors,including computed tomography(CT)and magnetic reso-nance imaging(MRI).CT provides information about dense tissues,whereas MRI gives information about soft tissues.However,the fusion of CT and MRI images has little effect on enhancing the accuracy of the diagnosis of brain tumors.Therefore,machine learning methods have been adopted to diagnose brain tumors in recent years.This paper intends to develop a novel scheme to detect and classify brain tumors based on fused CT and MRI images.The pro-posed approach starts with preprocessing the images to reduce the noise.Then,fusion rules are applied to get the fused image,and a segmentation algorithm is employed to isolate the tumor region from the background to isolate the tumor region.Finally,a machine learning classifier classified the brain images into benign and malignant tumors.Computing statistical measures evaluate the classi-fication potential of the proposed scheme.Experimental outcomes are provided,and the Enhanced Flower Pollination Algorithm(EFPA)system shows that it out-performs other brain tumor classification methods considered for comparison. 展开更多
关键词 Brain tumor classification improved wavelet threshold integer wavelet transform medical image fusion
下载PDF
Non Sub-Sampled Contourlet with Joint Sparse Representation Based Medical Image Fusion
10
作者 Kandasamy Kittusamy Latha Shanmuga Vadivu Sampath Kumar 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期1989-2005,共17页
Medical Image Fusion is the synthesizing technology for fusing multi-modal medical information using mathematical procedures to generate better visual on the image content and high-quality image output.Medical image f... Medical Image Fusion is the synthesizing technology for fusing multi-modal medical information using mathematical procedures to generate better visual on the image content and high-quality image output.Medical image fusion represents an indispensible role infixing major solutions for the complicated medical predicaments,while the recent research results have an enhanced affinity towards the preservation of medical image details,leaving color distortion and halo artifacts to remain unaddressed.This paper proposes a novel method of fusing Computer Tomography(CT)and Magnetic Resonance Imaging(MRI)using a hybrid model of Non Sub-sampled Contourlet Transform(NSCT)and Joint Sparse Representation(JSR).This model gratifies the need for precise integration of medical images of different modalities,which is an essential requirement in the diagnosing process towards clinical activities and treating the patients accordingly.In the proposed model,the medical image is decomposed using NSCT which is an efficient shift variant decomposition transformation method.JSR is exercised to extricate the common features of the medical image for the fusion process.The performance analysis of the proposed system proves that the proposed image fusion technique for medical image fusion is more efficient,provides better results,and a high level of distinctness by integrating the advantages of complementary images.The comparative analysis proves that the proposed technique exhibits better-quality than the existing medical image fusion practices. 展开更多
关键词 Medical image fusion computer tomography magnetic resonance imaging non sub-sampled contourlet transform(NSCT) joint sparse representation(JSR)
下载PDF
Multimodal Medical Image Fusion Based on Parameter Adaptive PCNN and Latent Low-rank Representation
11
作者 WANG Wenyan ZHOU Xianchun YANG Liangjian 《Instrumentation》 2023年第1期45-58,共14页
Medical image fusion has been developed as an efficient assistive technology in various clinical applications such as medical diagnosis and treatment planning.Aiming at the problem of insufficient protection of image ... Medical image fusion has been developed as an efficient assistive technology in various clinical applications such as medical diagnosis and treatment planning.Aiming at the problem of insufficient protection of image contour and detail information by traditional image fusion methods,a new multimodal medical image fusion method is proposed.This method first uses non-subsampled shearlet transform to decompose the source image to obtain high and low frequency subband coefficients,then uses the latent low rank representation algorithm to fuse the low frequency subband coefficients,and applies the improved PAPCNN algorithm to fuse the high frequency subband coefficients.Finally,based on the automatic setting of parameters,the optimization method configuration of the time decay factorαe is carried out.The experimental results show that the proposed method solves the problems of difficult parameter setting and insufficient detail protection ability in traditional PCNN algorithm fusion images,and at the same time,it has achieved great improvement in visual quality and objective evaluation indicators. 展开更多
关键词 Image fusion Non-subsampled Shearlet Transform Parameter Adaptive PCNN Latent Low-rank Representation
下载PDF
Research on Infrared Image Fusion Technology Based on Road Crack Detection
12
作者 Guangjun Li Lin Nan +3 位作者 Lu Zhang Manman Feng Yan Liu Xu Meng 《Journal of World Architecture》 2023年第3期21-26,共6页
This study aimed to propose road crack detection method based on infrared image fusion technology.By analyzing the characteristics of road crack images,this method uses a variety of infrared image fusion methods to pr... This study aimed to propose road crack detection method based on infrared image fusion technology.By analyzing the characteristics of road crack images,this method uses a variety of infrared image fusion methods to process different types of images.The use of this method allows the detection of road cracks,which not only reduces the professional requirements for inspectors,but also improves the accuracy of road crack detection.Based on infrared image processing technology,on the basis of in-depth analysis of infrared image features,a road crack detection method is proposed,which can accurately identify the road crack location,direction,length,and other characteristic information.Experiments showed that this method has a good effect,and can meet the requirement of road crack detection. 展开更多
关键词 Road crack detection Infrared image fusion technology Detection quality
下载PDF
Explainable Conformer Network for Detection of COVID-19 Pneumonia from Chest CT Scan: From Concepts toward Clinical Explainability
13
作者 Mohamed Abdel-Basset Hossam Hawash +2 位作者 Mohamed Abouhawwash S.S.Askar Alshaimaa A.Tantawy 《Computers, Materials & Continua》 SCIE EI 2024年第1期1171-1187,共17页
The early implementation of treatment therapies necessitates the swift and precise identification of COVID-19 pneumonia by the analysis of chest CT scans.This study aims to investigate the indispensable need for preci... The early implementation of treatment therapies necessitates the swift and precise identification of COVID-19 pneumonia by the analysis of chest CT scans.This study aims to investigate the indispensable need for precise and interpretable diagnostic tools for improving clinical decision-making for COVID-19 diagnosis.This paper proposes a novel deep learning approach,called Conformer Network,for explainable discrimination of viral pneumonia depending on the lung Region of Infections(ROI)within a single modality radiographic CT scan.Firstly,an efficient U-shaped transformer network is integrated for lung image segmentation.Then,a robust transfer learning technique is introduced to design a robust feature extractor based on pre-trained lightweight Big Transfer(BiT-L)and finetuned on medical data to effectively learn the patterns of infection in the input image.Secondly,this work presents a visual explanation method to guarantee clinical explainability for decisions made by Conformer Network.Experimental evaluation of real-world CT data demonstrated that the diagnostic accuracy of ourmodel outperforms cutting-edge studies with statistical significance.The Conformer Network achieves 97.40% of detection accuracy under cross-validation settings.Our model not only achieves high sensitivity and specificity but also affords visualizations of salient features contributing to each classification decision,enhancing the overall transparency and trustworthiness of our model.The findings provide obvious implications for the ability of our model to empower clinical staff by generating transparent intuitions about the features driving diagnostic decisions. 展开更多
关键词 Deep learning COVID-19 multi-modal medical image fusion diagnostic image fusion
下载PDF
PAPS: Progressive Attention-Based Pan-sharpening
14
作者 Yanan Jia Qiming Hu +2 位作者 Renwei Dian Jiayi Ma Xiaojie Guo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期391-404,共14页
Pan-sharpening aims to seek high-resolution multispectral(HRMS) images from paired multispectral images of low resolution(LRMS) and panchromatic(PAN) images, the key to which is how to maximally integrate spatial and ... Pan-sharpening aims to seek high-resolution multispectral(HRMS) images from paired multispectral images of low resolution(LRMS) and panchromatic(PAN) images, the key to which is how to maximally integrate spatial and spectral information from PAN and LRMS images. Following the principle of gradual advance, this paper designs a novel network that contains two main logical functions, i.e., detail enhancement and progressive fusion, to solve the problem. More specifically, the detail enhancement module attempts to produce enhanced MS results with the same spatial sizes as corresponding PAN images, which are of higher quality than directly up-sampling LRMS images.Having a better MS base(enhanced MS) and its PAN, we progressively extract information from the PAN and enhanced MS images, expecting to capture pivotal and complementary information of the two modalities for the purpose of constructing the desired HRMS. Extensive experiments together with ablation studies on widely-used datasets are provided to verify the efficacy of our design, and demonstrate its superiority over other state-of-the-art methods both quantitatively and qualitatively. Our code has been released at https://github.com/JiaYN1/PAPS. 展开更多
关键词 High-resolution multispectral image image fusion pan-sharpening progressive enhancement
下载PDF
Enhancing the Quality of Low-Light Printed Circuit Board Images through Hue, Saturation, and Value Channel Processing and Improved Multi-Scale Retinex
15
作者 Huichao Shang Penglei Li Xiangqian Peng 《Journal of Computer and Communications》 2024年第1期1-10,共10页
To address the issue of deteriorated PCB image quality in the quality inspection process due to insufficient or uneven lighting, we proposed an image enhancement fusion algorithm based on different color spaces. First... To address the issue of deteriorated PCB image quality in the quality inspection process due to insufficient or uneven lighting, we proposed an image enhancement fusion algorithm based on different color spaces. Firstly, an improved MSRCR method was employed for brightness enhancement of the original image. Next, the color space of the original image was transformed from RGB to HSV, followed by processing the S-channel image using bilateral filtering and contrast stretching algorithms. The V-channel image was subjected to brightness enhancement using adaptive Gamma and CLAHE algorithms. Subsequently, the processed image was transformed back to the RGB color space from HSV. Finally, the images processed by the two algorithms were fused to create a new RGB image, and color restoration was performed on the fused image. Comparative experiments with other methods indicated that the contrast of the image was optimized, texture features were more abundantly preserved, brightness levels were significantly improved, and color distortion was prevented effectively, thus enhancing the quality of low-lit PCB images. 展开更多
关键词 Low-Lit PCB Images Spatial Transformation Image Enhancement Image fusion HSV
下载PDF
SwinFusion: Cross-domain Long-range Learning for General Image Fusion via Swin Transformer 被引量:13
16
作者 Jiayi Ma Linfeng Tang +3 位作者 Fan Fan Jun Huang Xiaoguang Mei Yong Ma 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第7期1200-1217,共18页
This study proposes a novel general image fusion framework based on cross-domain long-range learning and Swin Transformer,termed as SwinFusion.On the one hand,an attention-guided cross-domain module is devised to achi... This study proposes a novel general image fusion framework based on cross-domain long-range learning and Swin Transformer,termed as SwinFusion.On the one hand,an attention-guided cross-domain module is devised to achieve sufficient integration of complementary information and global interaction.More specifically,the proposed method involves an intra-domain fusion unit based on self-attention and an interdomain fusion unit based on cross-attention,which mine and integrate long dependencies within the same domain and across domains.Through long-range dependency modeling,the network is able to fully implement domain-specific information extraction and cross-domain complementary information integration as well as maintaining the appropriate apparent intensity from a global perspective.In particular,we introduce the shifted windows mechanism into the self-attention and cross-attention,which allows our model to receive images with arbitrary sizes.On the other hand,the multi-scene image fusion problems are generalized to a unified framework with structure maintenance,detail preservation,and proper intensity control.Moreover,an elaborate loss function,consisting of SSIM loss,texture loss,and intensity loss,drives the network to preserve abundant texture details and structural information,as well as presenting optimal apparent intensity.Extensive experiments on both multi-modal image fusion and digital photography image fusion demonstrate the superiority of our SwinFusion compared to the state-of-theart unified image fusion algorithms and task-specific alternatives.Implementation code and pre-trained weights can be accessed at https://github.com/Linfeng-Tang/SwinFusion. 展开更多
关键词 Cross-domain long-range learning image fusion Swin transformer
下载PDF
Contourlet transform for image fusion using cycle spinning 被引量:9
17
作者 Kun Liu Lei Guo Jingsong Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第2期353-357,共5页
A new method for image fusion based on Contourlet transform and cycle spinning is proposed. Contourlet transform is a flexible multiresolution, local and directional image expansion, also provids a sparse representati... A new method for image fusion based on Contourlet transform and cycle spinning is proposed. Contourlet transform is a flexible multiresolution, local and directional image expansion, also provids a sparse representation for two-dimensional piece-wise smooth signals resembling images. Due to lack of translation invariance property in Contourlet transform, the conventional image fusion algorithm based on Contourlet transform introduces many artifacts. According to the theory of cycle spinning applied to image denoising, an invariance transform can reduce the artifacts through a series of processing efficiently. So the technology of cycle spinning is introduced to develop the translation invariant Contourlet fusion algorithm. This method can effectively eliminate the Gibbs-like phenomenon, extract the characteristics of original images, and preserve more important information. Experimental results show the simplicity and effectiveness of the method and its advantages over the conventional approaches. 展开更多
关键词 image processing image fusion Contourlet transform cycle spinning.
下载PDF
3D characterization of porosity and minerals of low-permeability uranium-bearing sandstone based on multi-resolution image fusion 被引量:6
18
作者 Bing Sun Shan-Shan Hou +3 位作者 Sheng Zeng Xin Bai Shu-Wen Zhang Jing Zhang 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第10期115-134,共20页
In the process of in situ leaching of uranium,the microstructure controls and influences the flow distribution,percolation characteristics,and reaction mechanism of lixivium in the pores of reservoir rocks and directl... In the process of in situ leaching of uranium,the microstructure controls and influences the flow distribution,percolation characteristics,and reaction mechanism of lixivium in the pores of reservoir rocks and directly affects the leaching of useful components.In this study,the pore throat,pore size distribution,and mineral composition of low-permeability uranium-bearing sandstone were quantitatively analyzed by high pressure mercury injection,nuclear magnetic resonance,X-ray diffraction,and wavelength-dispersive X-ray fluorescence.The distribution characteristics of pores and minerals in the samples were qualitatively analyzed using energy-dispersive scanning electron microscopy and multi-resolution CT images.Image registration with the landmarks algorithm provided by FEI Avizo was used to accurately match the CT images with different resolutions.The multi-scale and multi-mineral digital core model of low-permeability uranium-bearing sandstone is reconstructed through pore segmentation and mineral segmentation of fusion core scanning images.The results show that the pore structure of low-permeability uranium-bearing sandstone is complex and has multi-scale and multi-crossing characteristics.The intergranular pores determine the main seepage channel in the pore space,and the secondary pores have poor connectivity with other pores.Pyrite and coffinite are isolated from the connected pores and surrounded by a large number of clay minerals and ankerite cements,which increases the difficulty of uranium leaching.Clays and a large amount of ankerite cement are filled in the primary and secondary pores and pore throats of the low-permeability uraniumbearing sandstone,which significantly reduces the porosity of the movable fluid and results in low overall permeability of the cores.The multi-scale and multi-mineral digital core proposed in this study provides a basis for characterizing macroscopic and microscopic pore-throat structures and mineral distributions of low-permeability uranium-bearing sandstone and can better understand the seepage characteristics. 展开更多
关键词 Low-permeability uranium-bearing sandstone Digital core MICRO-CT SEM–EDS Image fusion
下载PDF
SuperFusion: A Versatile Image Registration and Fusion Network with Semantic Awareness 被引量:5
19
作者 Linfeng Tang Yuxin Deng +2 位作者 Yong Ma Jun Huang Jiayi Ma 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第12期2121-2137,共17页
Image fusion aims to integrate complementary information in source images to synthesize a fused image comprehensively characterizing the imaging scene. However, existing image fusion algorithms are only applicable to ... Image fusion aims to integrate complementary information in source images to synthesize a fused image comprehensively characterizing the imaging scene. However, existing image fusion algorithms are only applicable to strictly aligned source images and cause severe artifacts in the fusion results when input images have slight shifts or deformations. In addition,the fusion results typically only have good visual effect, but neglect the semantic requirements of high-level vision tasks.This study incorporates image registration, image fusion, and semantic requirements of high-level vision tasks into a single framework and proposes a novel image registration and fusion method, named Super Fusion. Specifically, we design a registration network to estimate bidirectional deformation fields to rectify geometric distortions of input images under the supervision of both photometric and end-point constraints. The registration and fusion are combined in a symmetric scheme, in which while mutual promotion can be achieved by optimizing the naive fusion loss, it is further enhanced by the mono-modal consistent constraint on symmetric fusion outputs. In addition, the image fusion network is equipped with the global spatial attention mechanism to achieve adaptive feature integration. Moreover, the semantic constraint based on the pre-trained segmentation model and Lovasz-Softmax loss is deployed to guide the fusion network to focus more on the semantic requirements of high-level vision tasks. Extensive experiments on image registration, image fusion,and semantic segmentation tasks demonstrate the superiority of our Super Fusion compared to the state-of-the-art alternatives.The source code and pre-trained model are publicly available at https://github.com/Linfeng-Tang/Super Fusion. 展开更多
关键词 Global spatial attention image fusion image registration mutual promotion semantic awareness
下载PDF
Intelligent Breast Cancer Prediction Empowered with Fusion and Deep Learning 被引量:6
20
作者 Shahan Yamin Siddiqui Iftikhar Naseer +4 位作者 Muhammad Adnan Khan Muhammad Faheem Mushtaq Rizwan Ali Naqvi Dildar Hussain Amir Haider 《Computers, Materials & Continua》 SCIE EI 2021年第4期1033-1049,共17页
Breast cancer is the most frequently detected tumor that eventually could result in a significant increase in female mortality globally.According to clinical statistics,one woman out of eight is under the threat of br... Breast cancer is the most frequently detected tumor that eventually could result in a significant increase in female mortality globally.According to clinical statistics,one woman out of eight is under the threat of breast cancer.Lifestyle and inheritance patterns may be a reason behind its spread among women.However,some preventive measures,such as tests and periodic clinical checks can mitigate its risk thereby,improving its survival chances substantially.Early diagnosis and initial stage treatment can help increase the survival rate.For that purpose,pathologists can gather support from nondestructive and efficient computer-aided diagnosis(CAD)systems.This study explores the breast cancer CAD method relying on multimodal medical imaging and decision-based fusion.In multimodal medical imaging fusion,a deep learning approach is applied,obtaining 97.5%accuracy with a 2.5%miss rate for breast cancer prediction.A deep extreme learning machine technique applied on feature-based data provided a 97.41%accuracy.Finally,decisionbased fusion applied to both breast cancer prediction models to diagnose its stages,resulted in an overall accuracy of 97.97%.The proposed system model provides more accurate results compared with other state-of-the-art approaches,rapidly diagnosing breast cancer to decrease its mortality rate. 展开更多
关键词 fusion feature breast cancer prediction deep learning convolutional neural network multi-modal medical image fusion decision-based fusion
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部