The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual ...The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual loads in the research on parameter estimation of valve-controlled cylinder system.Despite the actual load information contained in the operating data of the control valve,its acquisition remains challenging.This paper proposes a method that fuses bench test and operating data for parameter estimation to address the aforementioned problems.The proposed method is based on Bayesian theory,and its core is a pool fusion of prior information from bench test and operating data.Firstly,a system model is established,and the parameters in the model are analysed.Secondly,the bench and operating data of the system are collected.Then,the model parameters and weight coefficients are estimated using the data fusion method.Finally,the estimated effects of the data fusion method,Bayesian method,and particle swarm optimisation(PSO)algorithm on system model parameters are compared.The research shows that the weight coefficient represents the contribution of different prior information to the parameter estimation result.The effect of parameter estimation based on the data fusion method is better than that of the Bayesian method and the PSO algorithm.Increasing load complexity leads to a decrease in model accuracy,highlighting the crucial role of the data fusion method in parameter estimation studies.展开更多
Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.Howe...Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.However,the as-built part usually exhibits undesirable microstructure and unsatisfactory performance.In this work,WE43 parts were firstly fabricated by PBF-LB and then subjected to heat treatment.Although a high densification rate of 99.91%was achieved using suitable processes,the as-built parts exhibited anisotropic and layeredmicrostructure with heterogeneously precipitated Nd-rich intermetallic.After heat treatment,fine and nano-scaled Mg24Y5particles were precipitated.Meanwhile,theα-Mg grainsunderwent recrystallization and turned coarsened slightly,which effectively weakened thetexture intensity and reduced the anisotropy.As a consequence,the yield strength and ultimate tensile strength were significantly improved to(250.2±3.5)MPa and(312±3.7)MPa,respectively,while the elongation was still maintained at a high level of 15.2%.Furthermore,the homogenized microstructure reduced the tendency of localized corrosion and favoredthe development of uniform passivation film.Thus,the degradation rate of WE43 parts was decreased by an order of magnitude.Besides,in-vitro cell experiments proved their favorable biocompatibility.展开更多
Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not...Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not been studied for Mg alloys.In this study,WE43 Mg alloy bulk cubes,porous scaffolds,and thin walls with layer thicknesses of 10,20,30,and 40μm were fabricated.The required laser energy input increased with increasing layer thickness and was different for the bulk cubes and porous scaffolds.Porosity tended to occur at the connection joints in porous scaffolds for LT40 and could be eliminated by reducing the laser energy input.For thin wall parts,a large overhang angle or a small wall thickness resulted in porosity when a large layer thicknesses was used,and the porosity disappeared by reducing the layer thickness or laser energy input.A deeper keyhole penetration was found in all occasions with porosity,explaining the influence of layer thickness,geometrical structure,and laser energy input on the porosity.All the samples achieved a high fusion quality with a relative density of over 99.5%using the optimized laser energy input.The increased layer thickness resulted to more precipitation phases,finer grain sizes and decreased grain texture.With the similar high fusion quality,the tensile strength and elongation of bulk samples were significantly improved from 257 MPa and 1.41%with the 10μm layer to 287 MPa and 15.12%with the 40μm layer,in accordance with the microstructural change.The effect of layer thickness on the compressive properties of porous scaffolds was limited.However,the corrosion rate of bulk samples accelerated with increasing the layer thickness,mainly attributed to the increased number of precipitation phases.展开更多
Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The ...Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The printing quality and performance of L-PBF alloys are infuenced by numerous variables consisting of feedstock powders, manufacturing process,and post-treatment. As the starting materials, metallic powders play a critical role in infuencing the fabrication cost, printing consistency, and properties. Given their deterministic roles, the present review aims to retrospect the recent progress on metallic powders for L-PBF including characterization, preparation, and reuse. The powder characterization mainly serves for printing consistency while powder preparation and reuse are introduced to reduce the fabrication costs.Various powder characterization and preparation methods are presented in the beginning by analyzing the measurement principles, advantages, and limitations. Subsequently, the effect of powder reuse on the powder characteristics and mechanical performance of L-PBF parts is analyzed, focusing on steels, nickel-based superalloys, titanium and titanium alloys, and aluminum alloys. The evolution trends of powders and L-PBF parts vary depending on specific alloy systems, which makes the proposal of a unified reuse protocol infeasible. Finally,perspectives are presented to cater to the increased applications of L-PBF technologies for future investigations. The present state-of-the-art work can pave the way for the broad industrial applications of L-PBF by enhancing printing consistency and reducing the total costs from the perspective of powders.展开更多
Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at ...Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at high temperatures.Fusion welding serves as an effective means for joining and repairing these alloys;however,fusion welding-induced liquation cracking has been a challenging issue.This paper comprehensively reviewed recent liquation cracking,discussing the formation mechanisms,cracking criteria,and remedies.In recent investigations,regulating material composition,changing the preweld heat treatment of the base metal,optimizing the welding process parameters,and applying auxiliary control methods are effective strategies for mitigating cracks.To promote the application of nickel-based superalloys,further research on the combination impact of multiple elements on cracking prevention and specific quantitative criteria for liquation cracking is necessary.展开更多
Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-cond...Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-conductive CuCr1Zr with hard M300 tool steel.Two interface configurations of M300 on CuCr1Zr and CuCr1Zr on M300 were investigated. Ultra-fine grains form at the interface due to the low mutual solubility of Cu and steel. The material mixing zone size is dependent on the configurations and tunable in the range of0.1–0.3 mm by introducing a separate set of parameters for the interface layers. Microcracks and pores mainly occur in the transition zone.Regardless of these defects, the thermal diffusivity of bimetallic parts with 50vol% of CuCr1Zr significantly increases by 70%–150%compared to pure M300. The thermal diffusivity of CuCr1Zr and the hardness of M300 steel can be enhanced simultaneously by applying the aging heat treatment.展开更多
Based on the dinuclear system model,the calculated evaporation residue cross sections matched well with the current experimental results.The synthesis of superheavy elements Z=121 was systematically studied through co...Based on the dinuclear system model,the calculated evaporation residue cross sections matched well with the current experimental results.The synthesis of superheavy elements Z=121 was systematically studied through combinations of stable projectiles with Z=21-30 and targets with half-lives exceeding 50 d.The influence of mass asymmetry and isotopic dependence on the projectile and target nuclei was investigated in detail.The reactions^(254)Es(^(46)Ti,3n)^(297)121 and^(252)Es(^(46)Ti,3n)^(295)121 were found to be experimentally feasible for synthesizing superheavy element Z=121,with maximal evaporation residue cross sections of 6.619 and 4.123 fb at 219.9 and 223.9 MeV,respectively.展开更多
Sea surface temperature(SST)is one of the important parameters of global ocean and climate research,which can be retrieved by satellite infrared and passive microwave remote sensing instruments.While satellite infrare...Sea surface temperature(SST)is one of the important parameters of global ocean and climate research,which can be retrieved by satellite infrared and passive microwave remote sensing instruments.While satellite infrared SST offers high spatial resolution,it is limited by cloud cover.On the other hand,passive microwave SST provides all-weather observation but suffers from poor spatial resolution and susceptibility to environmental factors such as rainfall,coastal effects,and high wind speeds.To achieve high-precision,comprehensive,and high-resolution SST data,it is essential to fuse infrared and microwave SST measurements.In this study,data from the Fengyun-3D(FY-3D)medium resolution spectral imager II(MERSI-II)SST and microwave imager(MWRI)SST were fused.Firstly,the accuracy of both MERSIII SST and MWRI SST was verified,and the latter was bilinearly interpolated to match the 5km resolution grid of MERSI SST.After pretreatment and quality control of MERSI SST and MWRI SST,a Piece-Wise Regression method was employed to correct biases in MWRI SST.Subsequently,SST data were selected based on spatial resolution and accuracy within a 3-day window of the analysis date.Finally,an optimal interpolation method was applied to fuse the FY-3D MERSI-II SST and MWRI SST.The results demonstrated a significant improvement in spatial coverage compared to MERSI-II SST and MWRI SST.Furthermore,the fusion SST retained true spatial distribution details and exhibited an accuracy of–0.12±0.74℃compared to OSTIA SST.This study has improved the accuracy of FY satellite fusion SST products in China.展开更多
We present a qubit-loss-free(QLF)fusion scheme for generating large-scale atom W states in cavity quantum electrodynamics(QED)system.Compared to the most current fusion schemes which are conditioned on the case where ...We present a qubit-loss-free(QLF)fusion scheme for generating large-scale atom W states in cavity quantum electrodynamics(QED)system.Compared to the most current fusion schemes which are conditioned on the case where one particle can be extracted from each initial W state to the fusion process,our scheme will access one or two particles from each W state.Based on the atom–cavity-field detuned interaction,three jWin+m+t states can be generated from the jWin,jWim,and jWit states with the help of two auxiliary atoms,and three jWin+m+t+q states can be generated from jWin,jWim,jWit,and a jWiq state with the help of three auxiliary atoms.Comparing the numerical simulations of the resource cost of fusing three small-size W states based on the previous schemes,our fusion scheme seems to be more efficient.This QLF fusion scheme can be generalized to the case of fusing k different or identical particle W states.Furthermore,with no qubit loss,it greatly reduces the number of fusion steps and prepares W states with larger particle numbers.展开更多
In order to obtain more accurate precipitation data and better simulate the precipitation on the Tibetan Plateau,the simulation capability of 14 Coupled Model Intercomparison Project Phase 6(CMIP6)models of historical...In order to obtain more accurate precipitation data and better simulate the precipitation on the Tibetan Plateau,the simulation capability of 14 Coupled Model Intercomparison Project Phase 6(CMIP6)models of historical precipitation(1982-2014)on the Qinghai-Tibetan Plateau was evaluated in this study.Results indicate that all models exhibit an overestimation of precipitation through the analysis of the Taylor index,temporal and spatial statistical parameters.To correct the overestimation,a fusion correction method combining the Backpropagation Neural Network Correction(BP)and Quantum Mapping(QM)correction,named BQ method,was proposed.With this method,the historical precipitation of each model was corrected in space and time,respectively.The correction results were then analyzed in time,space,and analysis of variance(ANOVA)with those corrected by the BP and QM methods,respectively.Finally,the fusion correction method results for each model were compared with the Climatic Research Unit(CRU)data for significance analysis to obtain the trends of precipitation increase and decrease for each model.The results show that the IPSL-CM6A-LR model is relatively good in simulating historical precipitation on the Qinghai-Tibetan Plateau(R=0.7,RSME=0.15)among the uncorrected data.In terms of time,the total precipitation corrected by the fusion method has the same interannual trend and the closest precipitation values to the CRU data;In terms of space,the annual average precipitation corrected by the fusion method has the smallest difference with the CRU data,and the total historical annual average precipitation is not significantly different from the CRU data,which is better than BP and QM.Therefore,the correction effect of the fusion method on the historical precipitation of each model is better than that of the QM and BP methods.The precipitation in the central and northeastern parts of the plateau shows a significant increasing trend.The correlation coefficients between monthly precipitation and site-detected precipitation for all models after BQ correction exceed 0.8.展开更多
Improvement of fabrication efficiency and part performance was the main challenge for the large-scale powder bed fusion(PBF)process.In this study,a dynamic monitoring and feedback system of powder bed temperature fiel...Improvement of fabrication efficiency and part performance was the main challenge for the large-scale powder bed fusion(PBF)process.In this study,a dynamic monitoring and feedback system of powder bed temperature field using an infrared thermal imager has been established and integrated into a four-laser PBF equipment with a working area of 2000 mm×2000 mm.The heat-affected zone(HAZ)temperature field has been controlled by adjusting the scanning speed dynamically.Simultaneously,the relationship among spot size,HAZ temperature,and part performance has been established.The fluctuation of the HAZ temperature in four-laser scanning areas was decreased from 30.85℃to 17.41℃.Thus,the consistency of the sintering performance of the produced large component has been improved.Based on the controllable temperature field,a dynamically adjusting strategy for laser spot size was proposed,by which the fabrication efficiency was improved up to 65.38%.The current research results were of great significance to the further industrial applications of large-scale PBF equipment.展开更多
The high-resolution and nondestructive co-reference measurement of the inner and outer threedimensional(3D)surface profiles of laser fusion targets is difficult to achieve.In this study,we propose a laser differential...The high-resolution and nondestructive co-reference measurement of the inner and outer threedimensional(3D)surface profiles of laser fusion targets is difficult to achieve.In this study,we propose a laser differential confocal(LDC)–atomic force probe(AFP)method to measure the inner and outer 3D surface profiles of laser fusion targets at a high resolution.This method utilizes the LDC method to detect the deflection of the AFP and exploits the high spatial resolution of the AFP to enhance the spatial resolution of the outer profile measurement.Nondestructive and co-reference measurements of the inner profile of a target were achieved using the tomographic characteristics of the LDC method.Furthermore,by combining multiple repositionings of the target using a horizontal slewing shaft,the inner and outer 3D surface profiles of the target were obtained,along with a power spectrum assessment of the entire surface.The experimental results revealed that the respective axial and lateral resolutions of the outer profile measurement were 0.5 and 1.3 nm,while the respective axial and lateral resolutions of the inner profile measurement were 2.0 nm and approximately 400.0 nm.The repeatabilities of the rootmean-square deviation measurements for the outer and inner profiles of the target were 2.6 and 2.4 nm,respectively.We believe our study provides a promising method for the high-resolution and nondestructive co-reference measurement of the inner and outer 3D profiles of laser fusion targets.展开更多
Zinc(Zn)is considered a promising biodegradable metal for implant applications due to its appropriate degradability and favorable osteogenesis properties.In this work,laser powder bed fusion(LPBF)additive manufacturin...Zinc(Zn)is considered a promising biodegradable metal for implant applications due to its appropriate degradability and favorable osteogenesis properties.In this work,laser powder bed fusion(LPBF)additive manufacturing was employed to fabricate pure Zn with a heterogeneous microstructure and exceptional strength-ductility synergy.An optimized processing window of LPBF was established for printing Zn samples with relative densities greater than 99%using a laser power range of 80∼90 W and a scanning speed of 900 mm s−1.The Zn sample printed with a power of 80 W at a speed of 900 mm s−1 exhibited a hierarchical heterogeneous microstructure consisting of millimeter-scale molten pool boundaries,micrometer-scale bimodal grains,and nanometer-scale pre-existing dislocations,due to rapid cooling rates and significant thermal gradients formed in the molten pools.The printed sample exhibited the highest ductility of∼12.1%among all reported LPBF-printed pure Zn to date with appreciable ultimate tensile strength(∼128.7 MPa).Such superior strength-ductility synergy can be attributed to the presence of multiple deformation mechanisms that are primarily governed by heterogeneous deformation-induced hardening resulting from the alternative arrangement of bimodal Zn grains with pre-existing dislocations.Additionally,continuous strain hardening was facilitated through the interactions between deformation twins,grains and dislocations as strain accumulated,further contributing to the superior strength-ductility synergy.These findings provide valuable insights into the deformation behavior and mechanisms underlying exceptional mechanical properties of LPBF-printed Zn and its alloys for implant applications.展开更多
Based on the dinuclear system model,the synthesis of the predicted double-magic nuclei^(298)Fl and 304120 was investigated via neutron-rich radioactive beam-induced fusion reactions.The reaction^(58)Ca+^(244)Pu is pre...Based on the dinuclear system model,the synthesis of the predicted double-magic nuclei^(298)Fl and 304120 was investigated via neutron-rich radioactive beam-induced fusion reactions.The reaction^(58)Ca+^(244)Pu is predicted to be favorable for producing^(298)Fl with a maximal ER cross section of 0.301 pb.Investigations of the entrance channel effect reveal that the^(244)Pu target is more promising for synthesizing^(298)Fl than the neutron-rich targets^(248)Cm and^(249)Bk,because of the influence of the Coulomb barrier.For the synthesis of 304120,the maximal ER cross section of 0.046 fb emerges in the reaction^(58)V+^(249)Bk,indicating the need for further advancements in both experimental facilities and reaction mechanisms.展开更多
Herein,we employ the threshold energy neutron analysis(TENA)technique to introduce the world's first active interrogation system to detect special nuclear materials(SNMs),including U-235 and Pu-239.The system util...Herein,we employ the threshold energy neutron analysis(TENA)technique to introduce the world's first active interrogation system to detect special nuclear materials(SNMs),including U-235 and Pu-239.The system utilizes a DD neutron generator based on inertial electrostatic confinement(IEC)to interrogate suspicious objects.To detect secondary neutrons produced during fission reactions induced in SNMs,a tensioned metastable fluid detector(TMFD)is employed.The current status of the system's development is reported in this paper,accompanied by the results from experiments conducted to detect 10 g of highly enriched uranium(HEU).Notably,the experimental findings demonstrate a distinct difference in the count rates of measurements with and without HEU.This difference in count rates surpasses two times the standard deviation,indicating a confidence level of more than 96% for identifying the presence of HEU.The paper presents and extensively discusses the proof-of-principle experimental results,along with the system's planned trajectory.展开更多
The existingmultipath routing in Software Defined Network (SDN) is relatively blind and inefficient, and there is alack of cooperation between the terminal and network sides, making it difficult to achieve dynamic ada...The existingmultipath routing in Software Defined Network (SDN) is relatively blind and inefficient, and there is alack of cooperation between the terminal and network sides, making it difficult to achieve dynamic adaptationof service requirements and network resources. To address these issues, we propose a multi-constraint pathoptimization scheme based on information fusion in SDN. The proposed scheme collects network topology andnetwork state information on the network side and computes disjoint paths between end hosts. It uses the FuzzyAnalytic Hierarchy Process (FAHP) to calculate the weight coefficients of multiple constrained parameters andconstructs a composite quality evaluation function for the paths to determine the priority of the disjoint paths. TheSDN controller extracts the service attributes by analyzing the packet header and selects the optimal path for flowrule forwarding. Furthermore, the service attributes are fed back to the path composite quality evaluation function,and the path priority is dynamically adjusted to achieve dynamic adaptation between service requirements andnetwork status. By continuously monitoring and analyzing the service attributes, the scheme can ensure optimalrouting decisions in response to varying network conditions and evolving service demands. The experimentalresults demonstrated that the proposed scheme can effectively improve average throughput and link utilizationwhile meeting the Quality of Service (QoS) requirements of various applications.展开更多
Lattice metamaterials based on three-period minimum surface(TPMS)are an effective means to achieve lightweight and high-strength materials which are widely used in various fields such as aerospace and ships.However,it...Lattice metamaterials based on three-period minimum surface(TPMS)are an effective means to achieve lightweight and high-strength materials which are widely used in various fields such as aerospace and ships.However,its vibration and noise reduction,and damping properties have not been fully studied.Therefore,in this study,the TPMS structures with parameterization were designed by the method of surface migration,and the TPMS structures with high forming quality was manufactured by laser powder bed fusion(LPBF).The mechanical properties and energy absorption characteristics of the beam and TPMS structures were studied and compared by quasi-static compression.The modal shapes of the beam lattice structures and TPMS structures were obtained by the free modal analysis,and the damping properties of two structures were obtained by modal tests.For the two structures after heat treatment with the same porosity of 70%,the yield strength of the beam lattice structure reaches 40.76 MPa,elastic modulus is 20.38 GPa,the energy absorption value is 32.23 MJ·m^(-3),the damping ratio is 0.52%.The yield strength,elastic modulus,energy absorption value,and damping ratio of the TPMS structure are 50.74 MPa,25.37 GPa,47.34 MJ·m^(-3),and 0.99%,respectively.The results show that TPMS structures exhibit more excellent mechanical properties and energy absorption,better damping performance,and obvious advantages in structural load and vibration and noise reduction compared with the beam lattice structures under the same porosity.展开更多
Angular contact ball bearings have been widely used in machine tool spindles,and the bearing preload plays an important role in the performance of the spindle.In order to solve the problems of the traditional optimal ...Angular contact ball bearings have been widely used in machine tool spindles,and the bearing preload plays an important role in the performance of the spindle.In order to solve the problems of the traditional optimal preload prediction method limited by actual conditions and uncertainties,a roller bearing preload test method based on the improved D-S evidence theorymulti-sensor fusion method was proposed.First,a novel controllable preload system is proposed and evaluated.Subsequently,multiple sensors are employed to collect data on the bearing parameters during preload application.Finally,a multisensor fusion algorithm is used to make predictions,and a neural network is used to optimize the fitting of the preload data.The limitations of conventional preload testing methods are identified,and the integration of complementary information frommultiple sensors is used to achieve accurate predictions,offering valuable insights into the optimal preload force.Experimental results demonstrate that the multi-sensor fusion approach outperforms traditional methods in accurately measuring the optimal preload for rolling bearings.展开更多
This work investigated the effect of process parameters on densification,microstructure,and mechanical properties of a nickel-aluminum-bronze(NAB)alloy fabricated by laser powder bed fusion(LPBF)additive manufacturing...This work investigated the effect of process parameters on densification,microstructure,and mechanical properties of a nickel-aluminum-bronze(NAB)alloy fabricated by laser powder bed fusion(LPBF)additive manufacturing.The LPBF-printed NAB alloy samples with relative densities of over 98.5%were obtained under the volumetric energy density range of 200−250 J/mm^(3).The microstructure of the NAB alloy printed in both horizontal and vertical planes primarily consisted ofβ'martensitic phase and bandedαphase.In particular,a coarser-columnar grain structure and stronger crystallographic texture were achieved in the vertical plane,where the maximum texture intensity was 30.56 times greater than that of random textures at the(100)plane.Increasing the volumetric energy density resulted in a decrease in the columnar grain size,while increasing the amount ofαphase.Notably,β_(1)'martensitic structures with nanotwins and nanoscaleκ-phase precipitates were identified in the microstructure of LPBF-printed NAB samples with a volumetric energy density of 250 J/mm^(3).Furthermore,under optimal process parameters with a laser power of 350 W and scanning speed of 800 mm/s,significant improvements were observed in the microhardness(HV 386)and ultimate tensile strength(671 MPa),which was attributed to an increase in refined acicular martensite.展开更多
Post-heat treatment is commonly employed to improve the microstructural homogeneity and enhance the mechanical performances of the additively manufactured metallic materials.In this work,a ternary(NiTi)91Nb9(at.%)shap...Post-heat treatment is commonly employed to improve the microstructural homogeneity and enhance the mechanical performances of the additively manufactured metallic materials.In this work,a ternary(NiTi)91Nb9(at.%)shape memory alloy was produced by laser powder bed fusion(L-PBF)using pre-alloyed NiTi and elemental Nb powders.The effect of solution treatment on the microstructure,phase transformation behavior and mechanical/functional performances was investigated.The in-situ alloyed(NiTi)91Nb9 alloy exhibits a submicron cellular-dendritic structure surrounding the supersaturated B2-NiTi matrix.Upon high-temperature(1273 K)solution treatment,Nb-rich precipitates were precipitated from the supersaturated matrix.The fragmentation and spheroidization of the NiTi/Nb eutectics occurred during solution treatment,leading to a morphological transition from mesh-like into rod-like and sphere-like.Coarsening of theβ-Nb phases occurred with increasing holding time.The martensite transformation temperature increases after solution treatment,mainly attributed to:(i)reduced lattice distortion due to the Nb expulsion from the supersaturated B2-NiTi,and(ii)the Ti expulsion from theβ-Nb phases that lowers the ratio Ni/Ti in the B2-NiTi matrix,which resulted from the microstructure changes from non-equilibrium to equilibrium state.The thermal hysteresis of the solutionized alloys is around 145 K after 20%pre-deformation,which is comparable to the conventional NiTiNb alloys.A short-term solution treatment(i.e.at 1273 K for 30 min)enhances the ductility and strength of the as-printed specimen,with the increase of fracture stress from(613±19)MPa to(781±20)MPa and the increase of fracture strain from(7.6±0.1)%to(9.5±0.4)%.Both the as-printed and solutionized samples exhibit good tensile shape memory effects with recovery rates>90%.This work suggests that post-process heat treatment is essential to optimize the microstructure and improve the mechanical performances of the L-PBF in-situ alloyed parts.展开更多
基金Supported by National Key R&D Program of China(Grant Nos.2020YFB1709901,2020YFB1709904)National Natural Science Foundation of China(Grant Nos.51975495,51905460)+1 种基金Guangdong Provincial Basic and Applied Basic Research Foundation of China(Grant No.2021-A1515012286)Science and Technology Plan Project of Fuzhou City of China(Grant No.2022-P-022).
文摘The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual loads in the research on parameter estimation of valve-controlled cylinder system.Despite the actual load information contained in the operating data of the control valve,its acquisition remains challenging.This paper proposes a method that fuses bench test and operating data for parameter estimation to address the aforementioned problems.The proposed method is based on Bayesian theory,and its core is a pool fusion of prior information from bench test and operating data.Firstly,a system model is established,and the parameters in the model are analysed.Secondly,the bench and operating data of the system are collected.Then,the model parameters and weight coefficients are estimated using the data fusion method.Finally,the estimated effects of the data fusion method,Bayesian method,and particle swarm optimisation(PSO)algorithm on system model parameters are compared.The research shows that the weight coefficient represents the contribution of different prior information to the parameter estimation result.The effect of parameter estimation based on the data fusion method is better than that of the Bayesian method and the PSO algorithm.Increasing load complexity leads to a decrease in model accuracy,highlighting the crucial role of the data fusion method in parameter estimation studies.
基金supported by the following funds:National Natural Science Foundation of China(51935014,52165043)Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects(20225BCJ23008)+1 种基金Jiangxi Provincial Natural Science Foundation(20224ACB204013,20224ACB214008)Scientific Research Project of Anhui Universities(KJ2021A1106)。
文摘Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.However,the as-built part usually exhibits undesirable microstructure and unsatisfactory performance.In this work,WE43 parts were firstly fabricated by PBF-LB and then subjected to heat treatment.Although a high densification rate of 99.91%was achieved using suitable processes,the as-built parts exhibited anisotropic and layeredmicrostructure with heterogeneously precipitated Nd-rich intermetallic.After heat treatment,fine and nano-scaled Mg24Y5particles were precipitated.Meanwhile,theα-Mg grainsunderwent recrystallization and turned coarsened slightly,which effectively weakened thetexture intensity and reduced the anisotropy.As a consequence,the yield strength and ultimate tensile strength were significantly improved to(250.2±3.5)MPa and(312±3.7)MPa,respectively,while the elongation was still maintained at a high level of 15.2%.Furthermore,the homogenized microstructure reduced the tendency of localized corrosion and favoredthe development of uniform passivation film.Thus,the degradation rate of WE43 parts was decreased by an order of magnitude.Besides,in-vitro cell experiments proved their favorable biocompatibility.
基金funded by the National Key Research and Development Program of China(2018YFE0104200)National Natural Science Foundation of China(51875310,52175274,82172065)Tsinghua Precision Medicine Foundation.
文摘Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not been studied for Mg alloys.In this study,WE43 Mg alloy bulk cubes,porous scaffolds,and thin walls with layer thicknesses of 10,20,30,and 40μm were fabricated.The required laser energy input increased with increasing layer thickness and was different for the bulk cubes and porous scaffolds.Porosity tended to occur at the connection joints in porous scaffolds for LT40 and could be eliminated by reducing the laser energy input.For thin wall parts,a large overhang angle or a small wall thickness resulted in porosity when a large layer thicknesses was used,and the porosity disappeared by reducing the layer thickness or laser energy input.A deeper keyhole penetration was found in all occasions with porosity,explaining the influence of layer thickness,geometrical structure,and laser energy input on the porosity.All the samples achieved a high fusion quality with a relative density of over 99.5%using the optimized laser energy input.The increased layer thickness resulted to more precipitation phases,finer grain sizes and decreased grain texture.With the similar high fusion quality,the tensile strength and elongation of bulk samples were significantly improved from 257 MPa and 1.41%with the 10μm layer to 287 MPa and 15.12%with the 40μm layer,in accordance with the microstructural change.The effect of layer thickness on the compressive properties of porous scaffolds was limited.However,the corrosion rate of bulk samples accelerated with increasing the layer thickness,mainly attributed to the increased number of precipitation phases.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. AE89991/403)National Natural Science Foundation of China (Grant No. 52005262)+1 种基金Natural Science Foundation of Jiangsu Province (BK20202007)National Key Research and Development Program of China (2022YFB4600800)。
文摘Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The printing quality and performance of L-PBF alloys are infuenced by numerous variables consisting of feedstock powders, manufacturing process,and post-treatment. As the starting materials, metallic powders play a critical role in infuencing the fabrication cost, printing consistency, and properties. Given their deterministic roles, the present review aims to retrospect the recent progress on metallic powders for L-PBF including characterization, preparation, and reuse. The powder characterization mainly serves for printing consistency while powder preparation and reuse are introduced to reduce the fabrication costs.Various powder characterization and preparation methods are presented in the beginning by analyzing the measurement principles, advantages, and limitations. Subsequently, the effect of powder reuse on the powder characteristics and mechanical performance of L-PBF parts is analyzed, focusing on steels, nickel-based superalloys, titanium and titanium alloys, and aluminum alloys. The evolution trends of powders and L-PBF parts vary depending on specific alloy systems, which makes the proposal of a unified reuse protocol infeasible. Finally,perspectives are presented to cater to the increased applications of L-PBF technologies for future investigations. The present state-of-the-art work can pave the way for the broad industrial applications of L-PBF by enhancing printing consistency and reducing the total costs from the perspective of powders.
基金financially supported by the National Science and Technology Major Project of China(No.J2019-VI-0004-0117)。
文摘Nickel-based superalloys are extensively used in the crucial hot-section components of industrial gas turbines,aeronautics,and astronautics because of their excellent mechanical properties and corrosion resistance at high temperatures.Fusion welding serves as an effective means for joining and repairing these alloys;however,fusion welding-induced liquation cracking has been a challenging issue.This paper comprehensively reviewed recent liquation cracking,discussing the formation mechanisms,cracking criteria,and remedies.In recent investigations,regulating material composition,changing the preweld heat treatment of the base metal,optimizing the welding process parameters,and applying auxiliary control methods are effective strategies for mitigating cracks.To promote the application of nickel-based superalloys,further research on the combination impact of multiple elements on cracking prevention and specific quantitative criteria for liquation cracking is necessary.
基金supported by VTT Technical Research Centre of Finland,Aalto University,Aerosint SA,and partially from European Union Horizon 2020 (No.768775)。
文摘Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-conductive CuCr1Zr with hard M300 tool steel.Two interface configurations of M300 on CuCr1Zr and CuCr1Zr on M300 were investigated. Ultra-fine grains form at the interface due to the low mutual solubility of Cu and steel. The material mixing zone size is dependent on the configurations and tunable in the range of0.1–0.3 mm by introducing a separate set of parameters for the interface layers. Microcracks and pores mainly occur in the transition zone.Regardless of these defects, the thermal diffusivity of bimetallic parts with 50vol% of CuCr1Zr significantly increases by 70%–150%compared to pure M300. The thermal diffusivity of CuCr1Zr and the hardness of M300 steel can be enhanced simultaneously by applying the aging heat treatment.
基金the National Key R&D Program of China(No.2023YFA1606401)the National Natural Science Foundation of China(Nos.12135004,11635003 and 11961141004).
文摘Based on the dinuclear system model,the calculated evaporation residue cross sections matched well with the current experimental results.The synthesis of superheavy elements Z=121 was systematically studied through combinations of stable projectiles with Z=21-30 and targets with half-lives exceeding 50 d.The influence of mass asymmetry and isotopic dependence on the projectile and target nuclei was investigated in detail.The reactions^(254)Es(^(46)Ti,3n)^(297)121 and^(252)Es(^(46)Ti,3n)^(295)121 were found to be experimentally feasible for synthesizing superheavy element Z=121,with maximal evaporation residue cross sections of 6.619 and 4.123 fb at 219.9 and 223.9 MeV,respectively.
文摘Sea surface temperature(SST)is one of the important parameters of global ocean and climate research,which can be retrieved by satellite infrared and passive microwave remote sensing instruments.While satellite infrared SST offers high spatial resolution,it is limited by cloud cover.On the other hand,passive microwave SST provides all-weather observation but suffers from poor spatial resolution and susceptibility to environmental factors such as rainfall,coastal effects,and high wind speeds.To achieve high-precision,comprehensive,and high-resolution SST data,it is essential to fuse infrared and microwave SST measurements.In this study,data from the Fengyun-3D(FY-3D)medium resolution spectral imager II(MERSI-II)SST and microwave imager(MWRI)SST were fused.Firstly,the accuracy of both MERSIII SST and MWRI SST was verified,and the latter was bilinearly interpolated to match the 5km resolution grid of MERSI SST.After pretreatment and quality control of MERSI SST and MWRI SST,a Piece-Wise Regression method was employed to correct biases in MWRI SST.Subsequently,SST data were selected based on spatial resolution and accuracy within a 3-day window of the analysis date.Finally,an optimal interpolation method was applied to fuse the FY-3D MERSI-II SST and MWRI SST.The results demonstrated a significant improvement in spatial coverage compared to MERSI-II SST and MWRI SST.Furthermore,the fusion SST retained true spatial distribution details and exhibited an accuracy of–0.12±0.74℃compared to OSTIA SST.This study has improved the accuracy of FY satellite fusion SST products in China.
基金the National Natural Science Foun-dation of China(Grant No.12204311)the Jiangxi Natural Science Foundation(Grant No.20224BAB211025).
文摘We present a qubit-loss-free(QLF)fusion scheme for generating large-scale atom W states in cavity quantum electrodynamics(QED)system.Compared to the most current fusion schemes which are conditioned on the case where one particle can be extracted from each initial W state to the fusion process,our scheme will access one or two particles from each W state.Based on the atom–cavity-field detuned interaction,three jWin+m+t states can be generated from the jWin,jWim,and jWit states with the help of two auxiliary atoms,and three jWin+m+t+q states can be generated from jWin,jWim,jWit,and a jWiq state with the help of three auxiliary atoms.Comparing the numerical simulations of the resource cost of fusing three small-size W states based on the previous schemes,our fusion scheme seems to be more efficient.This QLF fusion scheme can be generalized to the case of fusing k different or identical particle W states.Furthermore,with no qubit loss,it greatly reduces the number of fusion steps and prepares W states with larger particle numbers.
文摘In order to obtain more accurate precipitation data and better simulate the precipitation on the Tibetan Plateau,the simulation capability of 14 Coupled Model Intercomparison Project Phase 6(CMIP6)models of historical precipitation(1982-2014)on the Qinghai-Tibetan Plateau was evaluated in this study.Results indicate that all models exhibit an overestimation of precipitation through the analysis of the Taylor index,temporal and spatial statistical parameters.To correct the overestimation,a fusion correction method combining the Backpropagation Neural Network Correction(BP)and Quantum Mapping(QM)correction,named BQ method,was proposed.With this method,the historical precipitation of each model was corrected in space and time,respectively.The correction results were then analyzed in time,space,and analysis of variance(ANOVA)with those corrected by the BP and QM methods,respectively.Finally,the fusion correction method results for each model were compared with the Climatic Research Unit(CRU)data for significance analysis to obtain the trends of precipitation increase and decrease for each model.The results show that the IPSL-CM6A-LR model is relatively good in simulating historical precipitation on the Qinghai-Tibetan Plateau(R=0.7,RSME=0.15)among the uncorrected data.In terms of time,the total precipitation corrected by the fusion method has the same interannual trend and the closest precipitation values to the CRU data;In terms of space,the annual average precipitation corrected by the fusion method has the smallest difference with the CRU data,and the total historical annual average precipitation is not significantly different from the CRU data,which is better than BP and QM.Therefore,the correction effect of the fusion method on the historical precipitation of each model is better than that of the QM and BP methods.The precipitation in the central and northeastern parts of the plateau shows a significant increasing trend.The correlation coefficients between monthly precipitation and site-detected precipitation for all models after BQ correction exceed 0.8.
基金Supported by National High Technology Research and Development Program of China(863 Program,Grant No.2015AA042503)K.C.Wong Education Foundation.
文摘Improvement of fabrication efficiency and part performance was the main challenge for the large-scale powder bed fusion(PBF)process.In this study,a dynamic monitoring and feedback system of powder bed temperature field using an infrared thermal imager has been established and integrated into a four-laser PBF equipment with a working area of 2000 mm×2000 mm.The heat-affected zone(HAZ)temperature field has been controlled by adjusting the scanning speed dynamically.Simultaneously,the relationship among spot size,HAZ temperature,and part performance has been established.The fluctuation of the HAZ temperature in four-laser scanning areas was decreased from 30.85℃to 17.41℃.Thus,the consistency of the sintering performance of the produced large component has been improved.Based on the controllable temperature field,a dynamically adjusting strategy for laser spot size was proposed,by which the fabrication efficiency was improved up to 65.38%.The current research results were of great significance to the further industrial applications of large-scale PBF equipment.
基金supported by the National Natural Science Foundation of China(52327806 and U22A6006).
文摘The high-resolution and nondestructive co-reference measurement of the inner and outer threedimensional(3D)surface profiles of laser fusion targets is difficult to achieve.In this study,we propose a laser differential confocal(LDC)–atomic force probe(AFP)method to measure the inner and outer 3D surface profiles of laser fusion targets at a high resolution.This method utilizes the LDC method to detect the deflection of the AFP and exploits the high spatial resolution of the AFP to enhance the spatial resolution of the outer profile measurement.Nondestructive and co-reference measurements of the inner profile of a target were achieved using the tomographic characteristics of the LDC method.Furthermore,by combining multiple repositionings of the target using a horizontal slewing shaft,the inner and outer 3D surface profiles of the target were obtained,along with a power spectrum assessment of the entire surface.The experimental results revealed that the respective axial and lateral resolutions of the outer profile measurement were 0.5 and 1.3 nm,while the respective axial and lateral resolutions of the inner profile measurement were 2.0 nm and approximately 400.0 nm.The repeatabilities of the rootmean-square deviation measurements for the outer and inner profiles of the target were 2.6 and 2.4 nm,respectively.We believe our study provides a promising method for the high-resolution and nondestructive co-reference measurement of the inner and outer 3D profiles of laser fusion targets.
基金National Natural Science Foundation of China (52305358)the Fundamental Research Funds for the Central Universities (2023ZYGXZR061)+3 种基金Guangdong Basic and Applied Basic Research Foundation (2022A1515010304)Science and Technology Program of Guangzhou (202201010362)Young Elite Scientists Sponsorship Program by CAST . (2023QNRC001)Young Talent Support Project of Guangzhou (QT-2023-001)
文摘Zinc(Zn)is considered a promising biodegradable metal for implant applications due to its appropriate degradability and favorable osteogenesis properties.In this work,laser powder bed fusion(LPBF)additive manufacturing was employed to fabricate pure Zn with a heterogeneous microstructure and exceptional strength-ductility synergy.An optimized processing window of LPBF was established for printing Zn samples with relative densities greater than 99%using a laser power range of 80∼90 W and a scanning speed of 900 mm s−1.The Zn sample printed with a power of 80 W at a speed of 900 mm s−1 exhibited a hierarchical heterogeneous microstructure consisting of millimeter-scale molten pool boundaries,micrometer-scale bimodal grains,and nanometer-scale pre-existing dislocations,due to rapid cooling rates and significant thermal gradients formed in the molten pools.The printed sample exhibited the highest ductility of∼12.1%among all reported LPBF-printed pure Zn to date with appreciable ultimate tensile strength(∼128.7 MPa).Such superior strength-ductility synergy can be attributed to the presence of multiple deformation mechanisms that are primarily governed by heterogeneous deformation-induced hardening resulting from the alternative arrangement of bimodal Zn grains with pre-existing dislocations.Additionally,continuous strain hardening was facilitated through the interactions between deformation twins,grains and dislocations as strain accumulated,further contributing to the superior strength-ductility synergy.These findings provide valuable insights into the deformation behavior and mechanisms underlying exceptional mechanical properties of LPBF-printed Zn and its alloys for implant applications.
基金supported by the National Key R&D Program of China(No.2023YFA1606401)the National Natural Science Foundation of China(Nos.12135004,11635003 and 11961141004)the Guangxi Natural Science Foundation(No.2022GXNSFBA035549).
文摘Based on the dinuclear system model,the synthesis of the predicted double-magic nuclei^(298)Fl and 304120 was investigated via neutron-rich radioactive beam-induced fusion reactions.The reaction^(58)Ca+^(244)Pu is predicted to be favorable for producing^(298)Fl with a maximal ER cross section of 0.301 pb.Investigations of the entrance channel effect reveal that the^(244)Pu target is more promising for synthesizing^(298)Fl than the neutron-rich targets^(248)Cm and^(249)Bk,because of the influence of the Coulomb barrier.For the synthesis of 304120,the maximal ER cross section of 0.046 fb emerges in the reaction^(58)V+^(249)Bk,indicating the need for further advancements in both experimental facilities and reaction mechanisms.
基金supported by Special Coordination Funds for Promoting Science and Technology,sponsored by Japan’s Ministry of Education,Culture,Sports,Science and Technology(MEXT).
文摘Herein,we employ the threshold energy neutron analysis(TENA)technique to introduce the world's first active interrogation system to detect special nuclear materials(SNMs),including U-235 and Pu-239.The system utilizes a DD neutron generator based on inertial electrostatic confinement(IEC)to interrogate suspicious objects.To detect secondary neutrons produced during fission reactions induced in SNMs,a tensioned metastable fluid detector(TMFD)is employed.The current status of the system's development is reported in this paper,accompanied by the results from experiments conducted to detect 10 g of highly enriched uranium(HEU).Notably,the experimental findings demonstrate a distinct difference in the count rates of measurements with and without HEU.This difference in count rates surpasses two times the standard deviation,indicating a confidence level of more than 96% for identifying the presence of HEU.The paper presents and extensively discusses the proof-of-principle experimental results,along with the system's planned trajectory.
基金the National Key R&D Program of China(No.2021YFB2700800)the GHfund B(No.202302024490).
文摘The existingmultipath routing in Software Defined Network (SDN) is relatively blind and inefficient, and there is alack of cooperation between the terminal and network sides, making it difficult to achieve dynamic adaptationof service requirements and network resources. To address these issues, we propose a multi-constraint pathoptimization scheme based on information fusion in SDN. The proposed scheme collects network topology andnetwork state information on the network side and computes disjoint paths between end hosts. It uses the FuzzyAnalytic Hierarchy Process (FAHP) to calculate the weight coefficients of multiple constrained parameters andconstructs a composite quality evaluation function for the paths to determine the priority of the disjoint paths. TheSDN controller extracts the service attributes by analyzing the packet header and selects the optimal path for flowrule forwarding. Furthermore, the service attributes are fed back to the path composite quality evaluation function,and the path priority is dynamically adjusted to achieve dynamic adaptation between service requirements andnetwork status. By continuously monitoring and analyzing the service attributes, the scheme can ensure optimalrouting decisions in response to varying network conditions and evolving service demands. The experimentalresults demonstrated that the proposed scheme can effectively improve average throughput and link utilizationwhile meeting the Quality of Service (QoS) requirements of various applications.
基金financially supported by the Liaoning Province Applied Fundamental Research Program(No.2023JH2/101700039)Liaoning Province Natural Science Foundation(No.2023-MSLH-328)。
文摘Lattice metamaterials based on three-period minimum surface(TPMS)are an effective means to achieve lightweight and high-strength materials which are widely used in various fields such as aerospace and ships.However,its vibration and noise reduction,and damping properties have not been fully studied.Therefore,in this study,the TPMS structures with parameterization were designed by the method of surface migration,and the TPMS structures with high forming quality was manufactured by laser powder bed fusion(LPBF).The mechanical properties and energy absorption characteristics of the beam and TPMS structures were studied and compared by quasi-static compression.The modal shapes of the beam lattice structures and TPMS structures were obtained by the free modal analysis,and the damping properties of two structures were obtained by modal tests.For the two structures after heat treatment with the same porosity of 70%,the yield strength of the beam lattice structure reaches 40.76 MPa,elastic modulus is 20.38 GPa,the energy absorption value is 32.23 MJ·m^(-3),the damping ratio is 0.52%.The yield strength,elastic modulus,energy absorption value,and damping ratio of the TPMS structure are 50.74 MPa,25.37 GPa,47.34 MJ·m^(-3),and 0.99%,respectively.The results show that TPMS structures exhibit more excellent mechanical properties and energy absorption,better damping performance,and obvious advantages in structural load and vibration and noise reduction compared with the beam lattice structures under the same porosity.
基金supported by:The Key Project of National Natural Science Foundation of China(U21A20125)The Open Project of State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines(SKLMRDPC21KF03)+5 种基金The National Key Research and Development Program of China(2020YFB1314203,2020YFB1314103)The Open Project of Key Laboratory of Conveyance and Equipment(KLCE2021-05)The Science and Technology Research Project of Jiangxi Provincial Department of Education(GJJ210639)The Supply and Demand Linking Employment Education Project of the Ministry of Education(20220100621)The Open Project of State Key Laboratory for Manufacturing Systems Engineering(sklms2023009)The Suzhou Basic Research Project(SJC2023003).
文摘Angular contact ball bearings have been widely used in machine tool spindles,and the bearing preload plays an important role in the performance of the spindle.In order to solve the problems of the traditional optimal preload prediction method limited by actual conditions and uncertainties,a roller bearing preload test method based on the improved D-S evidence theorymulti-sensor fusion method was proposed.First,a novel controllable preload system is proposed and evaluated.Subsequently,multiple sensors are employed to collect data on the bearing parameters during preload application.Finally,a multisensor fusion algorithm is used to make predictions,and a neural network is used to optimize the fitting of the preload data.The limitations of conventional preload testing methods are identified,and the integration of complementary information frommultiple sensors is used to achieve accurate predictions,offering valuable insights into the optimal preload force.Experimental results demonstrate that the multi-sensor fusion approach outperforms traditional methods in accurately measuring the optimal preload for rolling bearings.
基金Project(2022A1515010304)supported by the Guangdong Basic and Applied Basic Research Foundation,ChinaProject(52305358)supported by the National Natural Science Foundation of China+2 种基金Project(2023QNRC001)supported by the Young Elite Scientists Sponsorship Program by China Association for Science and TechnologyProject(QT-2023-001)supported by the Young Talent Support Project of Guangzhou,ChinaProject(2023ZYGXZR061)supported by the Fundamental Research Funds for the Central Universities,China。
文摘This work investigated the effect of process parameters on densification,microstructure,and mechanical properties of a nickel-aluminum-bronze(NAB)alloy fabricated by laser powder bed fusion(LPBF)additive manufacturing.The LPBF-printed NAB alloy samples with relative densities of over 98.5%were obtained under the volumetric energy density range of 200−250 J/mm^(3).The microstructure of the NAB alloy printed in both horizontal and vertical planes primarily consisted ofβ'martensitic phase and bandedαphase.In particular,a coarser-columnar grain structure and stronger crystallographic texture were achieved in the vertical plane,where the maximum texture intensity was 30.56 times greater than that of random textures at the(100)plane.Increasing the volumetric energy density resulted in a decrease in the columnar grain size,while increasing the amount ofαphase.Notably,β_(1)'martensitic structures with nanotwins and nanoscaleκ-phase precipitates were identified in the microstructure of LPBF-printed NAB samples with a volumetric energy density of 250 J/mm^(3).Furthermore,under optimal process parameters with a laser power of 350 W and scanning speed of 800 mm/s,significant improvements were observed in the microhardness(HV 386)and ultimate tensile strength(671 MPa),which was attributed to an increase in refined acicular martensite.
基金supported by the Natural Science Foundation of Shandong Province (ZR2020YQ39, ZR2020ZD05)Taishan Scholar Foundation of Shandong Province (tsqn202211002)the Young Scholars Program of Shandong University (Grant Number 2018WLJH24)
文摘Post-heat treatment is commonly employed to improve the microstructural homogeneity and enhance the mechanical performances of the additively manufactured metallic materials.In this work,a ternary(NiTi)91Nb9(at.%)shape memory alloy was produced by laser powder bed fusion(L-PBF)using pre-alloyed NiTi and elemental Nb powders.The effect of solution treatment on the microstructure,phase transformation behavior and mechanical/functional performances was investigated.The in-situ alloyed(NiTi)91Nb9 alloy exhibits a submicron cellular-dendritic structure surrounding the supersaturated B2-NiTi matrix.Upon high-temperature(1273 K)solution treatment,Nb-rich precipitates were precipitated from the supersaturated matrix.The fragmentation and spheroidization of the NiTi/Nb eutectics occurred during solution treatment,leading to a morphological transition from mesh-like into rod-like and sphere-like.Coarsening of theβ-Nb phases occurred with increasing holding time.The martensite transformation temperature increases after solution treatment,mainly attributed to:(i)reduced lattice distortion due to the Nb expulsion from the supersaturated B2-NiTi,and(ii)the Ti expulsion from theβ-Nb phases that lowers the ratio Ni/Ti in the B2-NiTi matrix,which resulted from the microstructure changes from non-equilibrium to equilibrium state.The thermal hysteresis of the solutionized alloys is around 145 K after 20%pre-deformation,which is comparable to the conventional NiTiNb alloys.A short-term solution treatment(i.e.at 1273 K for 30 min)enhances the ductility and strength of the as-printed specimen,with the increase of fracture stress from(613±19)MPa to(781±20)MPa and the increase of fracture strain from(7.6±0.1)%to(9.5±0.4)%.Both the as-printed and solutionized samples exhibit good tensile shape memory effects with recovery rates>90%.This work suggests that post-process heat treatment is essential to optimize the microstructure and improve the mechanical performances of the L-PBF in-situ alloyed parts.