The high-resolution and nondestructive co-reference measurement of the inner and outer threedimensional(3D)surface profiles of laser fusion targets is difficult to achieve.In this study,we propose a laser differential...The high-resolution and nondestructive co-reference measurement of the inner and outer threedimensional(3D)surface profiles of laser fusion targets is difficult to achieve.In this study,we propose a laser differential confocal(LDC)–atomic force probe(AFP)method to measure the inner and outer 3D surface profiles of laser fusion targets at a high resolution.This method utilizes the LDC method to detect the deflection of the AFP and exploits the high spatial resolution of the AFP to enhance the spatial resolution of the outer profile measurement.Nondestructive and co-reference measurements of the inner profile of a target were achieved using the tomographic characteristics of the LDC method.Furthermore,by combining multiple repositionings of the target using a horizontal slewing shaft,the inner and outer 3D surface profiles of the target were obtained,along with a power spectrum assessment of the entire surface.The experimental results revealed that the respective axial and lateral resolutions of the outer profile measurement were 0.5 and 1.3 nm,while the respective axial and lateral resolutions of the inner profile measurement were 2.0 nm and approximately 400.0 nm.The repeatabilities of the rootmean-square deviation measurements for the outer and inner profiles of the target were 2.6 and 2.4 nm,respectively.We believe our study provides a promising method for the high-resolution and nondestructive co-reference measurement of the inner and outer 3D profiles of laser fusion targets.展开更多
Due to the overwhelming characteristics of the Internet of Things(IoT)and its adoption in approximately every aspect of our lives,the concept of individual devices’privacy has gained prominent attention from both cus...Due to the overwhelming characteristics of the Internet of Things(IoT)and its adoption in approximately every aspect of our lives,the concept of individual devices’privacy has gained prominent attention from both customers,i.e.,people,and industries as wearable devices collect sensitive information about patients(both admitted and outdoor)in smart healthcare infrastructures.In addition to privacy,outliers or noise are among the crucial issues,which are directly correlated with IoT infrastructures,as most member devices are resource-limited and could generate or transmit false data that is required to be refined before processing,i.e.,transmitting.Therefore,the development of privacy-preserving information fusion techniques is highly encouraged,especially those designed for smart IoT-enabled domains.In this paper,we are going to present an effective hybrid approach that can refine raw data values captured by the respectivemember device before transmission while preserving its privacy through the utilization of the differential privacy technique in IoT infrastructures.Sliding window,i.e.,δi based dynamic programming methodology,is implemented at the device level to ensure precise and accurate detection of outliers or noisy data,and refine it prior to activation of the respective transmission activity.Additionally,an appropriate privacy budget has been selected,which is enough to ensure the privacy of every individualmodule,i.e.,a wearable device such as a smartwatch attached to the patient’s body.In contrast,the end module,i.e.,the server in this case,can extract important information with approximately the maximum level of accuracy.Moreover,refined data has been processed by adding an appropriate nose through the Laplace mechanism to make it useless or meaningless for the adversary modules in the IoT.The proposed hybrid approach is trusted from both the device’s privacy and the integrity of the transmitted information perspectives.Simulation and analytical results have proved that the proposed privacy-preserving information fusion technique for wearable devices is an ideal solution for resource-constrained infrastructures such as IoT and the Internet ofMedical Things,where both device privacy and information integrity are important.Finally,the proposed hybrid approach is proven against well-known intruder attacks,especially those related to the privacy of the respective device in IoT infrastructures.展开更多
Introduction: Lumbar fusion as low back pain treatment continues to be a challenge because of the multiple techniques and materials available, most popular techniques include Transforaminal lumbar interbody fusion (TL...Introduction: Lumbar fusion as low back pain treatment continues to be a challenge because of the multiple techniques and materials available, most popular techniques include Transforaminal lumbar interbody fusion (TLIF), Lateral lumbar interbody fusion (LLIF) and Anterior lumbar interbody fusion (ALIF). Successful lumbar fusion is associated with better clinical outcomes, and it is enhanced and targeted through the use of bone graft materials as an osteogenic cell binding peptide P-15, bound to an anorganic bone mineral (ABM). This peptide improves bone formation when used in fixation devices in a targeted and limited way to the implant surface by activating osteoblast precursor cells;by the osteogenic, osteoinductive and osteoconductive stimuli. The main objective of this study is to standardize the lumbar fusion process in the 3 techniques and achieve a more efficient and predictable lumbar fusion, evaluating results with radiological and clinical scales. Material and Methods: Patients underwent lumbar fusion with the use of P-15 Osteogenic Cell Binding Peptide, bound to an anorganic bone mineral (P-15/ABM) bone graft (5 cc) in three different techniques (TLIF, LLIF, ALIF), achieving a total of 100 lumbar levels. Radiological outcomes included fusion rates per Hounsfield Units at computed tomography (CT) scan and Lenke scale. Clinical outcomes were evaluated via the Oswestry Disability Index (ODI), Short Form Performance (SPF-36) and Visual Analog Scale (VAS and VASs) for pain and satisfaction. Results: 67 patients completed the 12 months follow-up, showing no differences in fusion rates between techniques. (Computed Tomography Hounsfield Units) CTHU reaches more than 200 UH at 3 months follow-up and continues fusion process till 12-month follow-up. Clinical scales showed no disability at ODI, improvement at VAS and VASs scales, absence of health restrictions at SPF-36 score since 6 months follow up. Conclusion: Bone graft volume of 5 cc is adequate for achieving successful lumbar fusion, regardless of the surgical technique employed.展开更多
BACKGROUND The induced-membrane technique was initially described by Masquelet as an effective treatment for large bone defects,especially those caused by infection.Here,we report a case of chronic osteomyelitis of th...BACKGROUND The induced-membrane technique was initially described by Masquelet as an effective treatment for large bone defects,especially those caused by infection.Here,we report a case of chronic osteomyelitis of the radius associated with a 9 cm bone defect,which was filled with a large allogeneic cortical bone graft from a bone bank.Complete bony union was achieved after 14 months of follow-up.Previous studies have used autogenous bone as the primary bone source for the Masquelet technique;in our case,the exclusive use of allografts is as successful as the use of autologous bone grafts.With the advent of bone banks,it is possible to obtain an unlimited amount of allograft,and the Masquelet technique may be further improved based on this new way of bone grafting.CASE SUMMARY In this study,we reported a case of repair of a long bone defect in a 40-year-old male patient,which was characterized by the utilization of allograft cortical bone combined with the Masquelet technique for the treatment of the patient's long bone defect in the forearm.The patient's results of functional recovery of the forearm were surprising,which further deepens the scope of application of Masquelet technique and helps to strengthen the efficacy of Masquelet technique in the treatment of long bones indeed.CONCLUSION Allograft cortical bone combined with the Masquelet technique provides a new method of treatment to large bone defect.展开更多
Solar flare prediction is an important subject in the field of space weather.Deep learning technology has greatly promoted the development of this subject.In this study,we propose a novel solar flare forecasting model...Solar flare prediction is an important subject in the field of space weather.Deep learning technology has greatly promoted the development of this subject.In this study,we propose a novel solar flare forecasting model integrating Deep Residual Network(ResNet)and Support Vector Machine(SVM)for both≥C-class(C,M,and X classes)and≥M-class(M and X classes)flares.We collected samples of magnetograms from May 1,2010 to September 13,2018 from Space-weather Helioseismic and Magnetic Imager(HMI)Active Region Patches and then used a cross-validation method to obtain seven independent data sets.We then utilized five metrics to evaluate our fusion model,based on intermediate-output extracted by ResNet and SVM using the Gaussian kernel function.Our results show that the primary metric true skill statistics(TSS)achieves a value of 0.708±0.027 for≥C-class prediction,and of 0.758±0.042 for≥M-class prediction;these values indicate that our approach performs significantly better than those of previous studies.The metrics of our fusion model’s performance on the seven datasets indicate that the model is quite stable and robust,suggesting that fusion models that integrate an excellent baseline network with SVM can achieve improved performance in solar flare prediction.Besides,we also discuss the performance impact of architectural innovation in our fusion model.展开更多
BACKGROUND Ependymoma with lipomatous differentiation is a rare type of ependymoma.The ZFTA fusion-positive supratentorial ependymoma is a novel tumor type in the 2021 World Health Organization classification of centr...BACKGROUND Ependymoma with lipomatous differentiation is a rare type of ependymoma.The ZFTA fusion-positive supratentorial ependymoma is a novel tumor type in the 2021 World Health Organization classification of central nervous system tumors.ZFTA fusion-positive lipomatous ependymoma has not been reported to date.CASE SUMMARY We reported a case of a 15-year-old Chinese male who had a sudden convulsion lasting approximately six minutes.Magnetic resonance imaging showed a round cystic shadow of approximately 1.9 cm×1.5 cm×1.9 cm under the right parieto-occipital cortex.Microscopic examination showed characteristic perivascular pseudorosettes and adipose differentiation in the cytoplasm.Immunohisto-chemical staining showed that the tumor cells were negative for cytokeratin,NeuN,Syn and p53,but positive for GFAP,vimentin and S-100 protein.Signi-ficant punctate intracytoplasmic EMA immunoreactivity was observed.The level of Ki-67 was about 5%.Genetic analysis revealed ZFTA:RELA fusion.A cranio-tomy with total excision of the tumor was performed.The follow-up time was 36 months,no evidence of disease recurrence was found in magnetic resonance imaging.CONCLUSION Based on these findings,the patient was diagnosed as a ependymoma with ZFTA fusion and lipomatous differentiation.This case report provides information on the microscopic morphological features of ependymoma with ZFTA fusion and lipomatous differentiation,which can help pathologists to make a definitive diagnosis of this tumor.展开更多
Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of suc...Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of successful treatment and survival.However,current diagnostic methods often fail to detect tumors at an early stage or to accurately pinpoint their location within the lung tissue.Single-model deep learning technologies for lung cancer detection,while beneficial,cannot capture the full range of features present in medical imaging data,leading to incomplete or inaccurate detection.Furthermore,it may not be robust enough to handle the wide variability in medical images due to different imaging conditions,patient anatomy,and tumor characteristics.To overcome these disadvantages,dual-model or multi-model approaches can be employed.This research focuses on enhancing the detection of lung cancer by utilizing a combination of two learning models:a Convolutional Neural Network(CNN)for categorization and the You Only Look Once(YOLOv8)architecture for real-time identification and pinpointing of tumors.CNNs automatically learn to extract hierarchical features from raw image data,capturing patterns such as edges,textures,and complex structures that are crucial for identifying lung cancer.YOLOv8 incorporates multiscale feature extraction,enabling the detection of tumors of varying sizes and scales within a single image.This is particularly beneficial for identifying small or irregularly shaped tumors that may be challenging to detect.Furthermore,through the utilization of cutting-edge data augmentation methods,such as Deep Convolutional Generative Adversarial Networks(DCGAN),the suggested approach can handle the issue of limited data and boost the models’ability to learn from diverse and comprehensive datasets.The combined method not only improved accuracy and localization but also ensured efficient real-time processing,which is crucial for practical clinical applications.The CNN achieved an accuracy of 97.67%in classifying lung tissues into healthy and cancerous categories.The YOLOv8 model achieved an Intersection over Union(IoU)score of 0.85 for tumor localization,reflecting high precision in detecting and marking tumor boundaries within the images.Finally,the incorporation of synthetic images generated by DCGAN led to a 10%improvement in both the CNN classification accuracy and YOLOv8 detection performance.展开更多
BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine recept...BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine receptor kinase(NTRK)gene fusionpositive uterine sarcoma,potentially aggressive and morphologically similar to fibrosarcoma,are limited due to its recent recognition.Pan-TRK immunohistochemistry(IHC)analysis serves as an effective screening tool with high sensitivity and specificity for NTRK-fusion malignancies.CASE SUMMARY We report a case of a malignant mesenchymal tumor originating from the uterine cervix,which was pan-TRK IHC-positive but lacked NTRK gene fusions,accompanied by a brief literature review.A 55-year-old woman presented to the emergency department with abdominal pain and distension,exhibiting significant ascites and multiple solid pelvic masses.Pelvic examination revealed a tumor encompassing the uterine cervix,extending to the vagina and uterine corpus.A punch biopsy of the cervix indicated NTRK sarcoma with positive immunochemical pan-TRK stain.However,subsequent next generation sequencing revealed no NTRK gene fusion,leading to a diagnosis of poorly differentiated,advanced-stage sarcoma.CONCLUSION The clinical significance of NTRK gene fusion lies in potential treatment with TRK inhibitors for positive sarcomas.Identifying such rare tumors is crucial due to the potential applicability of tropomyosin receptor kinase inhibitor treatment.展开更多
Despite advancements in neuroimaging,false positive diagnoses of intracranial aneurysms remain a significant concern.This article examines the causes,prevalence,and implications of such false-positive diagnoses.We dis...Despite advancements in neuroimaging,false positive diagnoses of intracranial aneurysms remain a significant concern.This article examines the causes,prevalence,and implications of such false-positive diagnoses.We discuss how conditions like arterial occlusion with vascular stump formation and infundibular widening can mimic aneurysms,particularly in the anterior circulation.The article compares various imaging modalities,including computer tomography angiogram,magnetic resonance imaging/angiography,and digital subtraction angiogram,highlighting their strengths and limitations.We emphasize the im-portance of accurate differentiation to avoid unnecessary surgical interventions.The potential of emerging technologies,such as high-resolution vessel wall ima-ging and deep neural networks for automated detection,is explored as promising avenues for improving diagnostic accuracy.This manuscript underscores the need for continued research and clinical vigilance in the diagnosis of intracranial aneurysms.展开更多
Successful polyethylene glycol fusion(PEG-fusion)of severed axons following peripheral nerve injuries for PEG-fused axons has been reported to:(1)rapidly restore electrophysiological continuity;(2)prevent distal Walle...Successful polyethylene glycol fusion(PEG-fusion)of severed axons following peripheral nerve injuries for PEG-fused axons has been reported to:(1)rapidly restore electrophysiological continuity;(2)prevent distal Wallerian Degeneration and maintain their myelin sheaths;(3)promote primarily motor,voluntary behavioral recoveries as assessed by the Sciatic Functional Index;and,(4)rapidly produce correct and incorrect connections in many possible combinations that produce rapid and extensive recovery of functional peripheral nervous system/central nervous system connections and reflex(e.g.,toe twitch)or voluntary behaviors.The preceding companion paper describes sensory terminal field reo rganization following PEG-fusion repair of sciatic nerve transections or ablations;howeve r,sensory behavioral recovery has not been explicitly explored following PEG-fusion repair.In the current study,we confirmed the success of PEG-fusion surgeries according to criteria(1-3)above and more extensively investigated whether PEG-fusion enhanced mechanical nociceptive recovery following sciatic transection in male and female outbred Sprague-Dawley and inbred Lewis rats.Mechanical nociceptive responses were assessed by measuring withdrawal thresholds using von Frey filaments on the dorsal and midplantar regions of the hindpaws.Dorsal von Frey filament tests were a more reliable method than plantar von Frey filament tests to assess mechanical nociceptive sensitivity following sciatic nerve transections.Baseline withdrawal thresholds of the sciatic-mediated lateral dorsal region differed significantly across strain but not sex.Withdrawal thresholds did not change significantly from baseline in chronic Unoperated and Sham-operated rats.Following sciatic transection,all rats exhibited severe hyposensitivity to stimuli at the lateral dorsal region of the hindpaw ipsilateral to the injury.However,PEG-fused rats exhibited significantly earlier return to baseline withdrawal thresholds than Negative Control rats.Furthermore,PEG-fused rats with significantly improved Sciatic Functional Index scores at or after 4 weeks postoperatively exhibited yet-earlier von Frey filament recove ry compared with those without Sciatic Functional Index recovery,suggesting a correlation between successful PEG-fusion and both motor-dominant and sensory-dominant behavioral recoveries.This correlation was independent of the sex or strain of the rat.Furthermore,our data showed that the acceleration of von Frey filament sensory recovery to baseline was solely due to the PEG-fused sciatic nerve and not saphenous nerve collateral outgrowths.No chronic hypersensitivity developed in any rat up to 12 weeks.All these data suggest that PEG-fusion repair of transection peripheral nerve injuries co uld have important clinical benefits.展开更多
Thunderstorm wind gusts are small in scale,typically occurring within a range of a few kilometers.It is extremely challenging to monitor and forecast thunderstorm wind gusts using only automatic weather stations.There...Thunderstorm wind gusts are small in scale,typically occurring within a range of a few kilometers.It is extremely challenging to monitor and forecast thunderstorm wind gusts using only automatic weather stations.Therefore,it is necessary to establish thunderstorm wind gust identification techniques based on multisource high-resolution observations.This paper introduces a new algorithm,called thunderstorm wind gust identification network(TGNet).It leverages multimodal feature fusion to fuse the temporal and spatial features of thunderstorm wind gust events.The shapelet transform is first used to extract the temporal features of wind speeds from automatic weather stations,which is aimed at distinguishing thunderstorm wind gusts from those caused by synoptic-scale systems or typhoons.Then,the encoder,structured upon the U-shaped network(U-Net)and incorporating recurrent residual convolutional blocks(R2U-Net),is employed to extract the corresponding spatial convective characteristics of satellite,radar,and lightning observations.Finally,by using the multimodal deep fusion module based on multi-head cross-attention,the temporal features of wind speed at each automatic weather station are incorporated into the spatial features to obtain 10-minutely classification of thunderstorm wind gusts.TGNet products have high accuracy,with a critical success index reaching 0.77.Compared with those of U-Net and R2U-Net,the false alarm rate of TGNet products decreases by 31.28%and 24.15%,respectively.The new algorithm provides grid products of thunderstorm wind gusts with a spatial resolution of 0.01°,updated every 10minutes.The results are finer and more accurate,thereby helping to improve the accuracy of operational warnings for thunderstorm wind gusts.展开更多
Ransomware attacks pose a significant threat to critical infrastructures,demanding robust detection mechanisms.This study introduces a hybrid model that combines vision transformer(ViT)and one-dimensional convolutiona...Ransomware attacks pose a significant threat to critical infrastructures,demanding robust detection mechanisms.This study introduces a hybrid model that combines vision transformer(ViT)and one-dimensional convolutional neural network(1DCNN)architectures to enhance ransomware detection capabilities.Addressing common challenges in ransomware detection,particularly dataset class imbalance,the synthetic minority oversampling technique(SMOTE)is employed to generate synthetic samples for minority class,thereby improving detection accuracy.The integration of ViT and 1DCNN through feature fusion enables the model to capture both global contextual and local sequential features,resulting in comprehensive ransomware classification.Tested on the UNSW-NB15 dataset,the proposed ViT-1DCNN model achieved 98%detection accuracy with precision,recall,and F1-score metrics surpassing conventional methods.This approach not only reduces false positives and negatives but also offers scalability and robustness for real-world cybersecurity applications.The results demonstrate the model’s potential as an effective tool for proactive ransomware detection,especially in environments where evolving threats require adaptable and high-accuracy solutions.展开更多
AIM:To evaluate the effect of femtosecond laser small incision lenticule extraction(SMILE)on the binocular visual function in myopic patients with glasses-free threedimensional(3D)technique.METHODS:Totally 50 myopic p...AIM:To evaluate the effect of femtosecond laser small incision lenticule extraction(SMILE)on the binocular visual function in myopic patients with glasses-free threedimensional(3D)technique.METHODS:Totally 50 myopic patients(39 females and 11 males)with SMILE were enrolled in this prospective study.The glasses-free 3D technique was used to evaluate the binocular visual function in these subjects including static stereopsis,dynamic stereopsis,foveal suppression,and binocular balance point of signal to noise ratio(s/n ratio).All subjects received measurements in 1d before operation,and 1d,1wk,and 1mo postoperatively.RESULTS:Both static and dynamic stereopsis showed no significant difference after SMILE.The foveal suppression improved significantly 1wk and 1mo after SMILE(P=0.005 and P=0.007 respectively).The binocular balance point of signal to noise ratio showed a significant improvement 1d,1wk and 1mo after SMILE for both eyes(P<0.001 for each eye respectively).CONCLUSION:Glasses-free 3D technique can be used to evaluate the effect of SMILE on the binocular visual function in myopic patients perceptively,and SMILE can improve both foveal suppression and binocular imbalance in these patients.展开更多
Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic ...Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic models,and there is a significant gap between the research results and actual wireless sensor networks.Some scholars have now modeled data fusion networks to make them more suitable for practical applications.This paper will explore the deployment problem of a stochastic data fusion wireless sensor network(SDFWSN),a model that reflects the randomness of environmental monitoring and uses data fusion techniques widely used in actual sensor networks for information collection.The deployment problem of SDFWSN is modeled as a multi-objective optimization problem.The network life cycle,spatiotemporal coverage,detection rate,and false alarm rate of SDFWSN are used as optimization objectives to optimize the deployment of network nodes.This paper proposes an enhanced multi-objective mongoose optimization algorithm(EMODMOA)to solve the deployment problem of SDFWSN.First,to overcome the shortcomings of the DMOA algorithm,such as its low convergence and tendency to get stuck in a local optimum,an encircling and hunting strategy is introduced into the original algorithm to propose the EDMOA algorithm.The EDMOA algorithm is designed as the EMODMOA algorithm by selecting reference points using the K-Nearest Neighbor(KNN)algorithm.To verify the effectiveness of the proposed algorithm,the EMODMOA algorithm was tested at CEC 2020 and achieved good results.In the SDFWSN deployment problem,the algorithm was compared with the Non-dominated Sorting Genetic Algorithm II(NSGAII),Multiple Objective Particle Swarm Optimization(MOPSO),Multi-Objective Evolutionary Algorithm based on Decomposition(MOEA/D),and Multi-Objective Grey Wolf Optimizer(MOGWO).By comparing and analyzing the performance evaluation metrics and optimization results of the objective functions of the multi-objective algorithms,the algorithm outperforms the other algorithms in the SDFWSN deployment results.To better demonstrate the superiority of the algorithm,simulations of diverse test cases were also performed,and good results were obtained.展开更多
Three-dimensional ocean subsurface temperature and salinity structures(OST/OSS)in the South China Sea(SCS)play crucial roles in oceanic climate research and disaster mitigation.Traditionally,real-time OST and OSS are ...Three-dimensional ocean subsurface temperature and salinity structures(OST/OSS)in the South China Sea(SCS)play crucial roles in oceanic climate research and disaster mitigation.Traditionally,real-time OST and OSS are mainly obtained through in-situ ocean observations and simulation by ocean circulation models,which are usually challenging and costly.Recently,dynamical,statistical,or machine learning models have been proposed to invert the OST/OSS from sea surface information;however,these models mainly focused on the inversion of monthly OST and OSS.To address this issue,we apply clustering algorithms and employ a stacking strategy to ensemble three models(XGBoost,Random Forest,and LightGBM)to invert the real-time OST/OSS based on satellite-derived data and the Argo dataset.Subsequently,a fusion of temperature and salinity is employed to reconstruct OST and OSS.In the validation dataset,the depth-averaged Correlation(Corr)of the estimated OST(OSS)is 0.919(0.83),and the average Root-Mean-Square Error(RMSE)is0.639°C(0.087 psu),with a depth-averaged coefficient of determination(R~2)of 0.84(0.68).Notably,at the thermocline where the base models exhibit their maximum error,the stacking-based fusion model exhibited significant performance enhancement,with a maximum enhancement in OST and OSS inversion exceeding 10%.We further found that the estimated OST and OSS exhibit good agreement with the HYbrid Coordinate Ocean Model(HYCOM)data and BOA_Argo dataset during the passage of a mesoscale eddy.This study shows that the proposed model can effectively invert the real-time OST and OSS,potentially enhancing the understanding of multi-scale oceanic processes in the SCS.展开更多
Disordered ferromagnets with a domain structure that exhibit a hysteresis loop when driven by the external magnetic field are essential materials for modern technological applications.Therefore,the understanding and p...Disordered ferromagnets with a domain structure that exhibit a hysteresis loop when driven by the external magnetic field are essential materials for modern technological applications.Therefore,the understanding and potential for controlling the hysteresis phenomenon in thesematerials,especially concerning the disorder-induced critical behavior on the hysteresis loop,have attracted significant experimental,theoretical,and numerical research efforts.We review the challenges of the numerical modeling of physical phenomena behind the hysteresis loop critical behavior in disordered ferromagnetic systems related to the non-equilibriumstochastic dynamics of domain walls driven by external fields.Specifically,using the extended Random Field Ising Model,we present different simulation approaches and advanced numerical techniques that adequately describe the hysteresis loop shapes and the collective nature of the magnetization fluctuations associated with the criticality of the hysteresis loop for different sample shapes and varied parameters of disorder and rate of change of the external field,as well as the influence of thermal fluctuations and demagnetizing fields.The studied examples demonstrate how these numerical approaches reveal newphysical insights,providing quantitativemeasures of pertinent variables extracted from the systems’simulated or experimentally measured Barkhausen noise signals.The described computational techniques using inherent scale-invariance can be applied to the analysis of various complex systems,both quantum and classical,exhibiting non-equilibrium dynamical critical point or self-organized criticality.展开更多
Multi-source information fusion (MSIF) is imported into structural damage diagnosis methods to improve the validity of damage detection. After the introduction of the basic theory, the function model, classification...Multi-source information fusion (MSIF) is imported into structural damage diagnosis methods to improve the validity of damage detection. After the introduction of the basic theory, the function model, classifications and mathematical methods of MSIF, a structural damage detection method based on MSIF is presented, which is to fuse two or more damage character vectors from different structural damage diagnosis methods on the character-level. In an experiment of concrete plates, modal information is measured and analyzed. The structural damage detection method based on MSIF is taken to localize cracks of concrete plates and it is proved to be effective. Results of damage detection by the method based on MSIF are compared with those from the modal strain energy method and the flexibility method. Damage, which can hardly be detected by using the single damage identification method, can be diagnosed by the damage detection method based on the character-level MSIF technique. Meanwhile multi-location damage can be identified by the method based on MSIF. This method is sensitive to structural damage and different mathematical methods for MSIF have different preconditions and applicabilities for diversified structures. How to choose mathematical methods for MSIF should be discussed in detail in health monitoring systems of actual structures.展开更多
Assuring medical images protection and robustness is a compulsory necessity nowadays.In this paper,a novel technique is proposed that fuses the wavelet-induced multi-resolution decomposition of the Discrete Wavelet Tr...Assuring medical images protection and robustness is a compulsory necessity nowadays.In this paper,a novel technique is proposed that fuses the wavelet-induced multi-resolution decomposition of the Discrete Wavelet Transform(DWT)with the energy compaction of the Discrete Wavelet Transform(DCT).The multi-level Encryption-based Hybrid Fusion Technique(EbhFT)aims to achieve great advances in terms of imperceptibility and security of medical images.A DWT disintegrated sub-band of a cover image is reformed simultaneously using the DCT transform.Afterwards,a 64-bit hex key is employed to encrypt the host image as well as participate in the second key creation process to encode the watermark.Lastly,a PN-sequence key is formed along with a supplementary key in the third layer of the EbHFT.Thus,the watermarked image is generated by enclosing both keys into DWT and DCT coefficients.The fusions ability of the proposed EbHFT technique makes the best use of the distinct privileges of using both DWT and DCT methods.In order to validate the proposed technique,a standard dataset of medical images is used.Simulation results show higher performance of the visual quality(i.e.,57.65)for the watermarked forms of all types of medical images.In addition,EbHFT robustness outperforms an existing scheme tested for the same dataset in terms of Normalized Correlation(NC).Finally,extra protection for digital images from against illegal replicating and unapproved tampering using the proposed technique.展开更多
Objective:To describe the anatomical characteristics and patterns of neurovascular compression (NVC) in patients suffering trigeminal neuralgia(TN) by 3D high-resolution magnetic resonance imaging(MRI) method and imag...Objective:To describe the anatomical characteristics and patterns of neurovascular compression (NVC) in patients suffering trigeminal neuralgia(TN) by 3D high-resolution magnetic resonance imaging(MRI) method and image fusion technique.Methods:The anatomic structure of trigeminal nerve,brain stem and blood vessel was observed in 100 consecutive TN patients by 3D high resolution MRI(3D SPGR,contrast-enhanced T1 3D MP-RAGE and T2/T1 3D FIESTA). The 3D image sources were fused and visualized using 3D DOCTOR software.Results:One or several NVC sites,which usually appeared 0-9.8 mm away from brain stem,were found on the symptomatic side in 93%of the TN cases.Superior cerebellar artery was involved in 76%(71/93) of these cases.The other vessels including antero-inferior cerebellar artery,vertebral artery, basilar artery and veins also contributed to the occurrence of NVC.The NVC sites were found to be located in the proximal segment in 42%of these cases(39/93) and in the distal segment in 45% (42/93).Nerve dislocation or distortion was observed in 32%(30/93).Conclusions:Various 3D high resolution MRI methods combined with the image fusion technique could provide pathologic anatomic information for the diagnosis and treatment of TN.展开更多
基金supported by the National Natural Science Foundation of China(52327806 and U22A6006).
文摘The high-resolution and nondestructive co-reference measurement of the inner and outer threedimensional(3D)surface profiles of laser fusion targets is difficult to achieve.In this study,we propose a laser differential confocal(LDC)–atomic force probe(AFP)method to measure the inner and outer 3D surface profiles of laser fusion targets at a high resolution.This method utilizes the LDC method to detect the deflection of the AFP and exploits the high spatial resolution of the AFP to enhance the spatial resolution of the outer profile measurement.Nondestructive and co-reference measurements of the inner profile of a target were achieved using the tomographic characteristics of the LDC method.Furthermore,by combining multiple repositionings of the target using a horizontal slewing shaft,the inner and outer 3D surface profiles of the target were obtained,along with a power spectrum assessment of the entire surface.The experimental results revealed that the respective axial and lateral resolutions of the outer profile measurement were 0.5 and 1.3 nm,while the respective axial and lateral resolutions of the inner profile measurement were 2.0 nm and approximately 400.0 nm.The repeatabilities of the rootmean-square deviation measurements for the outer and inner profiles of the target were 2.6 and 2.4 nm,respectively.We believe our study provides a promising method for the high-resolution and nondestructive co-reference measurement of the inner and outer 3D profiles of laser fusion targets.
基金Ministry of Higher Education of Malaysia under theResearch GrantLRGS/1/2019/UKM-UKM/5/2 and Princess Nourah bint Abdulrahman University for financing this researcher through Supporting Project Number(PNURSP2024R235),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Due to the overwhelming characteristics of the Internet of Things(IoT)and its adoption in approximately every aspect of our lives,the concept of individual devices’privacy has gained prominent attention from both customers,i.e.,people,and industries as wearable devices collect sensitive information about patients(both admitted and outdoor)in smart healthcare infrastructures.In addition to privacy,outliers or noise are among the crucial issues,which are directly correlated with IoT infrastructures,as most member devices are resource-limited and could generate or transmit false data that is required to be refined before processing,i.e.,transmitting.Therefore,the development of privacy-preserving information fusion techniques is highly encouraged,especially those designed for smart IoT-enabled domains.In this paper,we are going to present an effective hybrid approach that can refine raw data values captured by the respectivemember device before transmission while preserving its privacy through the utilization of the differential privacy technique in IoT infrastructures.Sliding window,i.e.,δi based dynamic programming methodology,is implemented at the device level to ensure precise and accurate detection of outliers or noisy data,and refine it prior to activation of the respective transmission activity.Additionally,an appropriate privacy budget has been selected,which is enough to ensure the privacy of every individualmodule,i.e.,a wearable device such as a smartwatch attached to the patient’s body.In contrast,the end module,i.e.,the server in this case,can extract important information with approximately the maximum level of accuracy.Moreover,refined data has been processed by adding an appropriate nose through the Laplace mechanism to make it useless or meaningless for the adversary modules in the IoT.The proposed hybrid approach is trusted from both the device’s privacy and the integrity of the transmitted information perspectives.Simulation and analytical results have proved that the proposed privacy-preserving information fusion technique for wearable devices is an ideal solution for resource-constrained infrastructures such as IoT and the Internet ofMedical Things,where both device privacy and information integrity are important.Finally,the proposed hybrid approach is proven against well-known intruder attacks,especially those related to the privacy of the respective device in IoT infrastructures.
文摘Introduction: Lumbar fusion as low back pain treatment continues to be a challenge because of the multiple techniques and materials available, most popular techniques include Transforaminal lumbar interbody fusion (TLIF), Lateral lumbar interbody fusion (LLIF) and Anterior lumbar interbody fusion (ALIF). Successful lumbar fusion is associated with better clinical outcomes, and it is enhanced and targeted through the use of bone graft materials as an osteogenic cell binding peptide P-15, bound to an anorganic bone mineral (ABM). This peptide improves bone formation when used in fixation devices in a targeted and limited way to the implant surface by activating osteoblast precursor cells;by the osteogenic, osteoinductive and osteoconductive stimuli. The main objective of this study is to standardize the lumbar fusion process in the 3 techniques and achieve a more efficient and predictable lumbar fusion, evaluating results with radiological and clinical scales. Material and Methods: Patients underwent lumbar fusion with the use of P-15 Osteogenic Cell Binding Peptide, bound to an anorganic bone mineral (P-15/ABM) bone graft (5 cc) in three different techniques (TLIF, LLIF, ALIF), achieving a total of 100 lumbar levels. Radiological outcomes included fusion rates per Hounsfield Units at computed tomography (CT) scan and Lenke scale. Clinical outcomes were evaluated via the Oswestry Disability Index (ODI), Short Form Performance (SPF-36) and Visual Analog Scale (VAS and VASs) for pain and satisfaction. Results: 67 patients completed the 12 months follow-up, showing no differences in fusion rates between techniques. (Computed Tomography Hounsfield Units) CTHU reaches more than 200 UH at 3 months follow-up and continues fusion process till 12-month follow-up. Clinical scales showed no disability at ODI, improvement at VAS and VASs scales, absence of health restrictions at SPF-36 score since 6 months follow up. Conclusion: Bone graft volume of 5 cc is adequate for achieving successful lumbar fusion, regardless of the surgical technique employed.
文摘BACKGROUND The induced-membrane technique was initially described by Masquelet as an effective treatment for large bone defects,especially those caused by infection.Here,we report a case of chronic osteomyelitis of the radius associated with a 9 cm bone defect,which was filled with a large allogeneic cortical bone graft from a bone bank.Complete bony union was achieved after 14 months of follow-up.Previous studies have used autogenous bone as the primary bone source for the Masquelet technique;in our case,the exclusive use of allografts is as successful as the use of autologous bone grafts.With the advent of bone banks,it is possible to obtain an unlimited amount of allograft,and the Masquelet technique may be further improved based on this new way of bone grafting.CASE SUMMARY In this study,we reported a case of repair of a long bone defect in a 40-year-old male patient,which was characterized by the utilization of allograft cortical bone combined with the Masquelet technique for the treatment of the patient's long bone defect in the forearm.The patient's results of functional recovery of the forearm were surprising,which further deepens the scope of application of Masquelet technique and helps to strengthen the efficacy of Masquelet technique in the treatment of long bones indeed.CONCLUSION Allograft cortical bone combined with the Masquelet technique provides a new method of treatment to large bone defect.
基金supported by the National Key R&D Program of China (Grant No.2022YFF0503700)the National Natural Science Foundation of China (42074196, 41925018)
文摘Solar flare prediction is an important subject in the field of space weather.Deep learning technology has greatly promoted the development of this subject.In this study,we propose a novel solar flare forecasting model integrating Deep Residual Network(ResNet)and Support Vector Machine(SVM)for both≥C-class(C,M,and X classes)and≥M-class(M and X classes)flares.We collected samples of magnetograms from May 1,2010 to September 13,2018 from Space-weather Helioseismic and Magnetic Imager(HMI)Active Region Patches and then used a cross-validation method to obtain seven independent data sets.We then utilized five metrics to evaluate our fusion model,based on intermediate-output extracted by ResNet and SVM using the Gaussian kernel function.Our results show that the primary metric true skill statistics(TSS)achieves a value of 0.708±0.027 for≥C-class prediction,and of 0.758±0.042 for≥M-class prediction;these values indicate that our approach performs significantly better than those of previous studies.The metrics of our fusion model’s performance on the seven datasets indicate that the model is quite stable and robust,suggesting that fusion models that integrate an excellent baseline network with SVM can achieve improved performance in solar flare prediction.Besides,we also discuss the performance impact of architectural innovation in our fusion model.
文摘BACKGROUND Ependymoma with lipomatous differentiation is a rare type of ependymoma.The ZFTA fusion-positive supratentorial ependymoma is a novel tumor type in the 2021 World Health Organization classification of central nervous system tumors.ZFTA fusion-positive lipomatous ependymoma has not been reported to date.CASE SUMMARY We reported a case of a 15-year-old Chinese male who had a sudden convulsion lasting approximately six minutes.Magnetic resonance imaging showed a round cystic shadow of approximately 1.9 cm×1.5 cm×1.9 cm under the right parieto-occipital cortex.Microscopic examination showed characteristic perivascular pseudorosettes and adipose differentiation in the cytoplasm.Immunohisto-chemical staining showed that the tumor cells were negative for cytokeratin,NeuN,Syn and p53,but positive for GFAP,vimentin and S-100 protein.Signi-ficant punctate intracytoplasmic EMA immunoreactivity was observed.The level of Ki-67 was about 5%.Genetic analysis revealed ZFTA:RELA fusion.A cranio-tomy with total excision of the tumor was performed.The follow-up time was 36 months,no evidence of disease recurrence was found in magnetic resonance imaging.CONCLUSION Based on these findings,the patient was diagnosed as a ependymoma with ZFTA fusion and lipomatous differentiation.This case report provides information on the microscopic morphological features of ependymoma with ZFTA fusion and lipomatous differentiation,which can help pathologists to make a definitive diagnosis of this tumor.
文摘Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of successful treatment and survival.However,current diagnostic methods often fail to detect tumors at an early stage or to accurately pinpoint their location within the lung tissue.Single-model deep learning technologies for lung cancer detection,while beneficial,cannot capture the full range of features present in medical imaging data,leading to incomplete or inaccurate detection.Furthermore,it may not be robust enough to handle the wide variability in medical images due to different imaging conditions,patient anatomy,and tumor characteristics.To overcome these disadvantages,dual-model or multi-model approaches can be employed.This research focuses on enhancing the detection of lung cancer by utilizing a combination of two learning models:a Convolutional Neural Network(CNN)for categorization and the You Only Look Once(YOLOv8)architecture for real-time identification and pinpointing of tumors.CNNs automatically learn to extract hierarchical features from raw image data,capturing patterns such as edges,textures,and complex structures that are crucial for identifying lung cancer.YOLOv8 incorporates multiscale feature extraction,enabling the detection of tumors of varying sizes and scales within a single image.This is particularly beneficial for identifying small or irregularly shaped tumors that may be challenging to detect.Furthermore,through the utilization of cutting-edge data augmentation methods,such as Deep Convolutional Generative Adversarial Networks(DCGAN),the suggested approach can handle the issue of limited data and boost the models’ability to learn from diverse and comprehensive datasets.The combined method not only improved accuracy and localization but also ensured efficient real-time processing,which is crucial for practical clinical applications.The CNN achieved an accuracy of 97.67%in classifying lung tissues into healthy and cancerous categories.The YOLOv8 model achieved an Intersection over Union(IoU)score of 0.85 for tumor localization,reflecting high precision in detecting and marking tumor boundaries within the images.Finally,the incorporation of synthetic images generated by DCGAN led to a 10%improvement in both the CNN classification accuracy and YOLOv8 detection performance.
基金Supported by Grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute,funded by the Ministry of Health&Welfare,Republic of Korea,No.RS-2022-KH129889.
文摘BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine receptor kinase(NTRK)gene fusionpositive uterine sarcoma,potentially aggressive and morphologically similar to fibrosarcoma,are limited due to its recent recognition.Pan-TRK immunohistochemistry(IHC)analysis serves as an effective screening tool with high sensitivity and specificity for NTRK-fusion malignancies.CASE SUMMARY We report a case of a malignant mesenchymal tumor originating from the uterine cervix,which was pan-TRK IHC-positive but lacked NTRK gene fusions,accompanied by a brief literature review.A 55-year-old woman presented to the emergency department with abdominal pain and distension,exhibiting significant ascites and multiple solid pelvic masses.Pelvic examination revealed a tumor encompassing the uterine cervix,extending to the vagina and uterine corpus.A punch biopsy of the cervix indicated NTRK sarcoma with positive immunochemical pan-TRK stain.However,subsequent next generation sequencing revealed no NTRK gene fusion,leading to a diagnosis of poorly differentiated,advanced-stage sarcoma.CONCLUSION The clinical significance of NTRK gene fusion lies in potential treatment with TRK inhibitors for positive sarcomas.Identifying such rare tumors is crucial due to the potential applicability of tropomyosin receptor kinase inhibitor treatment.
文摘Despite advancements in neuroimaging,false positive diagnoses of intracranial aneurysms remain a significant concern.This article examines the causes,prevalence,and implications of such false-positive diagnoses.We discuss how conditions like arterial occlusion with vascular stump formation and infundibular widening can mimic aneurysms,particularly in the anterior circulation.The article compares various imaging modalities,including computer tomography angiogram,magnetic resonance imaging/angiography,and digital subtraction angiogram,highlighting their strengths and limitations.We emphasize the im-portance of accurate differentiation to avoid unnecessary surgical interventions.The potential of emerging technologies,such as high-resolution vessel wall ima-ging and deep neural networks for automated detection,is explored as promising avenues for improving diagnostic accuracy.This manuscript underscores the need for continued research and clinical vigilance in the diagnosis of intracranial aneurysms.
基金supported by DOD AFIRMⅢW81XWH-20-2-0029 subcontract,UT POC19-1774-13Neuraptive Therapeutics Inc.26-7724-56+1 种基金NIH R01-NS128086 grantsLone Star Paralysis gift(to GDB)。
文摘Successful polyethylene glycol fusion(PEG-fusion)of severed axons following peripheral nerve injuries for PEG-fused axons has been reported to:(1)rapidly restore electrophysiological continuity;(2)prevent distal Wallerian Degeneration and maintain their myelin sheaths;(3)promote primarily motor,voluntary behavioral recoveries as assessed by the Sciatic Functional Index;and,(4)rapidly produce correct and incorrect connections in many possible combinations that produce rapid and extensive recovery of functional peripheral nervous system/central nervous system connections and reflex(e.g.,toe twitch)or voluntary behaviors.The preceding companion paper describes sensory terminal field reo rganization following PEG-fusion repair of sciatic nerve transections or ablations;howeve r,sensory behavioral recovery has not been explicitly explored following PEG-fusion repair.In the current study,we confirmed the success of PEG-fusion surgeries according to criteria(1-3)above and more extensively investigated whether PEG-fusion enhanced mechanical nociceptive recovery following sciatic transection in male and female outbred Sprague-Dawley and inbred Lewis rats.Mechanical nociceptive responses were assessed by measuring withdrawal thresholds using von Frey filaments on the dorsal and midplantar regions of the hindpaws.Dorsal von Frey filament tests were a more reliable method than plantar von Frey filament tests to assess mechanical nociceptive sensitivity following sciatic nerve transections.Baseline withdrawal thresholds of the sciatic-mediated lateral dorsal region differed significantly across strain but not sex.Withdrawal thresholds did not change significantly from baseline in chronic Unoperated and Sham-operated rats.Following sciatic transection,all rats exhibited severe hyposensitivity to stimuli at the lateral dorsal region of the hindpaw ipsilateral to the injury.However,PEG-fused rats exhibited significantly earlier return to baseline withdrawal thresholds than Negative Control rats.Furthermore,PEG-fused rats with significantly improved Sciatic Functional Index scores at or after 4 weeks postoperatively exhibited yet-earlier von Frey filament recove ry compared with those without Sciatic Functional Index recovery,suggesting a correlation between successful PEG-fusion and both motor-dominant and sensory-dominant behavioral recoveries.This correlation was independent of the sex or strain of the rat.Furthermore,our data showed that the acceleration of von Frey filament sensory recovery to baseline was solely due to the PEG-fused sciatic nerve and not saphenous nerve collateral outgrowths.No chronic hypersensitivity developed in any rat up to 12 weeks.All these data suggest that PEG-fusion repair of transection peripheral nerve injuries co uld have important clinical benefits.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3004104)the National Natural Science Foundation of China(Grant No.U2342204)+4 种基金the Innovation and Development Program of the China Meteorological Administration(Grant No.CXFZ2024J001)the Open Research Project of the Key Open Laboratory of Hydrology and Meteorology of the China Meteorological Administration(Grant No.23SWQXZ010)the Science and Technology Plan Project of Zhejiang Province(Grant No.2022C03150)the Open Research Fund Project of Anyang National Climate Observatory(Grant No.AYNCOF202401)the Open Bidding for Selecting the Best Candidates Program(Grant No.CMAJBGS202318)。
文摘Thunderstorm wind gusts are small in scale,typically occurring within a range of a few kilometers.It is extremely challenging to monitor and forecast thunderstorm wind gusts using only automatic weather stations.Therefore,it is necessary to establish thunderstorm wind gust identification techniques based on multisource high-resolution observations.This paper introduces a new algorithm,called thunderstorm wind gust identification network(TGNet).It leverages multimodal feature fusion to fuse the temporal and spatial features of thunderstorm wind gust events.The shapelet transform is first used to extract the temporal features of wind speeds from automatic weather stations,which is aimed at distinguishing thunderstorm wind gusts from those caused by synoptic-scale systems or typhoons.Then,the encoder,structured upon the U-shaped network(U-Net)and incorporating recurrent residual convolutional blocks(R2U-Net),is employed to extract the corresponding spatial convective characteristics of satellite,radar,and lightning observations.Finally,by using the multimodal deep fusion module based on multi-head cross-attention,the temporal features of wind speed at each automatic weather station are incorporated into the spatial features to obtain 10-minutely classification of thunderstorm wind gusts.TGNet products have high accuracy,with a critical success index reaching 0.77.Compared with those of U-Net and R2U-Net,the false alarm rate of TGNet products decreases by 31.28%and 24.15%,respectively.The new algorithm provides grid products of thunderstorm wind gusts with a spatial resolution of 0.01°,updated every 10minutes.The results are finer and more accurate,thereby helping to improve the accuracy of operational warnings for thunderstorm wind gusts.
文摘Ransomware attacks pose a significant threat to critical infrastructures,demanding robust detection mechanisms.This study introduces a hybrid model that combines vision transformer(ViT)and one-dimensional convolutional neural network(1DCNN)architectures to enhance ransomware detection capabilities.Addressing common challenges in ransomware detection,particularly dataset class imbalance,the synthetic minority oversampling technique(SMOTE)is employed to generate synthetic samples for minority class,thereby improving detection accuracy.The integration of ViT and 1DCNN through feature fusion enables the model to capture both global contextual and local sequential features,resulting in comprehensive ransomware classification.Tested on the UNSW-NB15 dataset,the proposed ViT-1DCNN model achieved 98%detection accuracy with precision,recall,and F1-score metrics surpassing conventional methods.This approach not only reduces false positives and negatives but also offers scalability and robustness for real-world cybersecurity applications.The results demonstrate the model’s potential as an effective tool for proactive ransomware detection,especially in environments where evolving threats require adaptable and high-accuracy solutions.
基金Supported by Sichuan Science and Technology Program(No.23NSFSC0856).
文摘AIM:To evaluate the effect of femtosecond laser small incision lenticule extraction(SMILE)on the binocular visual function in myopic patients with glasses-free threedimensional(3D)technique.METHODS:Totally 50 myopic patients(39 females and 11 males)with SMILE were enrolled in this prospective study.The glasses-free 3D technique was used to evaluate the binocular visual function in these subjects including static stereopsis,dynamic stereopsis,foveal suppression,and binocular balance point of signal to noise ratio(s/n ratio).All subjects received measurements in 1d before operation,and 1d,1wk,and 1mo postoperatively.RESULTS:Both static and dynamic stereopsis showed no significant difference after SMILE.The foveal suppression improved significantly 1wk and 1mo after SMILE(P=0.005 and P=0.007 respectively).The binocular balance point of signal to noise ratio showed a significant improvement 1d,1wk and 1mo after SMILE for both eyes(P<0.001 for each eye respectively).CONCLUSION:Glasses-free 3D technique can be used to evaluate the effect of SMILE on the binocular visual function in myopic patients perceptively,and SMILE can improve both foveal suppression and binocular imbalance in these patients.
基金supported by the National Natural Science Foundation of China under Grant Nos.U21A20464,62066005Innovation Project of Guangxi Graduate Education under Grant No.YCSW2024313.
文摘Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic models,and there is a significant gap between the research results and actual wireless sensor networks.Some scholars have now modeled data fusion networks to make them more suitable for practical applications.This paper will explore the deployment problem of a stochastic data fusion wireless sensor network(SDFWSN),a model that reflects the randomness of environmental monitoring and uses data fusion techniques widely used in actual sensor networks for information collection.The deployment problem of SDFWSN is modeled as a multi-objective optimization problem.The network life cycle,spatiotemporal coverage,detection rate,and false alarm rate of SDFWSN are used as optimization objectives to optimize the deployment of network nodes.This paper proposes an enhanced multi-objective mongoose optimization algorithm(EMODMOA)to solve the deployment problem of SDFWSN.First,to overcome the shortcomings of the DMOA algorithm,such as its low convergence and tendency to get stuck in a local optimum,an encircling and hunting strategy is introduced into the original algorithm to propose the EDMOA algorithm.The EDMOA algorithm is designed as the EMODMOA algorithm by selecting reference points using the K-Nearest Neighbor(KNN)algorithm.To verify the effectiveness of the proposed algorithm,the EMODMOA algorithm was tested at CEC 2020 and achieved good results.In the SDFWSN deployment problem,the algorithm was compared with the Non-dominated Sorting Genetic Algorithm II(NSGAII),Multiple Objective Particle Swarm Optimization(MOPSO),Multi-Objective Evolutionary Algorithm based on Decomposition(MOEA/D),and Multi-Objective Grey Wolf Optimizer(MOGWO).By comparing and analyzing the performance evaluation metrics and optimization results of the objective functions of the multi-objective algorithms,the algorithm outperforms the other algorithms in the SDFWSN deployment results.To better demonstrate the superiority of the algorithm,simulations of diverse test cases were also performed,and good results were obtained.
基金jointly supported by the National Key Research and Development Program of China(2022YFC3104304)the National Natural Science Foundation of China(Grant No.41876011)+1 种基金the 2022 Research Program of Sanya Yazhou Bay Science and Technology City(SKJC-2022-01-001)the Hainan Province Science and Technology Special Fund(ZDYF2021SHFZ265)。
文摘Three-dimensional ocean subsurface temperature and salinity structures(OST/OSS)in the South China Sea(SCS)play crucial roles in oceanic climate research and disaster mitigation.Traditionally,real-time OST and OSS are mainly obtained through in-situ ocean observations and simulation by ocean circulation models,which are usually challenging and costly.Recently,dynamical,statistical,or machine learning models have been proposed to invert the OST/OSS from sea surface information;however,these models mainly focused on the inversion of monthly OST and OSS.To address this issue,we apply clustering algorithms and employ a stacking strategy to ensemble three models(XGBoost,Random Forest,and LightGBM)to invert the real-time OST/OSS based on satellite-derived data and the Argo dataset.Subsequently,a fusion of temperature and salinity is employed to reconstruct OST and OSS.In the validation dataset,the depth-averaged Correlation(Corr)of the estimated OST(OSS)is 0.919(0.83),and the average Root-Mean-Square Error(RMSE)is0.639°C(0.087 psu),with a depth-averaged coefficient of determination(R~2)of 0.84(0.68).Notably,at the thermocline where the base models exhibit their maximum error,the stacking-based fusion model exhibited significant performance enhancement,with a maximum enhancement in OST and OSS inversion exceeding 10%.We further found that the estimated OST and OSS exhibit good agreement with the HYbrid Coordinate Ocean Model(HYCOM)data and BOA_Argo dataset during the passage of a mesoscale eddy.This study shows that the proposed model can effectively invert the real-time OST and OSS,potentially enhancing the understanding of multi-scale oceanic processes in the SCS.
基金Djordje Spasojevic and Svetislav Mijatovic acknowledge the support from the Ministry of Science,TechnologicalDevelopment and Innovation of the Republic of Serbia(Agreement No.451-03-65/2024-03/200162)S.J.ibid.(Agreement No.451-03-65/2024-03/200122)Bosiljka Tadic from the Slovenian Research Agency(program P1-0044).
文摘Disordered ferromagnets with a domain structure that exhibit a hysteresis loop when driven by the external magnetic field are essential materials for modern technological applications.Therefore,the understanding and potential for controlling the hysteresis phenomenon in thesematerials,especially concerning the disorder-induced critical behavior on the hysteresis loop,have attracted significant experimental,theoretical,and numerical research efforts.We review the challenges of the numerical modeling of physical phenomena behind the hysteresis loop critical behavior in disordered ferromagnetic systems related to the non-equilibriumstochastic dynamics of domain walls driven by external fields.Specifically,using the extended Random Field Ising Model,we present different simulation approaches and advanced numerical techniques that adequately describe the hysteresis loop shapes and the collective nature of the magnetization fluctuations associated with the criticality of the hysteresis loop for different sample shapes and varied parameters of disorder and rate of change of the external field,as well as the influence of thermal fluctuations and demagnetizing fields.The studied examples demonstrate how these numerical approaches reveal newphysical insights,providing quantitativemeasures of pertinent variables extracted from the systems’simulated or experimentally measured Barkhausen noise signals.The described computational techniques using inherent scale-invariance can be applied to the analysis of various complex systems,both quantum and classical,exhibiting non-equilibrium dynamical critical point or self-organized criticality.
基金The National High Technology Research and Develop-ment Program of China(863Program)(No.2006AA04Z416)the Na-tional Science Fund for Distinguished Young Scholars(No.50725828)the Excellent Dissertation Program for Doctoral Degree of Southeast University(No.0705)
文摘Multi-source information fusion (MSIF) is imported into structural damage diagnosis methods to improve the validity of damage detection. After the introduction of the basic theory, the function model, classifications and mathematical methods of MSIF, a structural damage detection method based on MSIF is presented, which is to fuse two or more damage character vectors from different structural damage diagnosis methods on the character-level. In an experiment of concrete plates, modal information is measured and analyzed. The structural damage detection method based on MSIF is taken to localize cracks of concrete plates and it is proved to be effective. Results of damage detection by the method based on MSIF are compared with those from the modal strain energy method and the flexibility method. Damage, which can hardly be detected by using the single damage identification method, can be diagnosed by the damage detection method based on the character-level MSIF technique. Meanwhile multi-location damage can be identified by the method based on MSIF. This method is sensitive to structural damage and different mathematical methods for MSIF have different preconditions and applicabilities for diversified structures. How to choose mathematical methods for MSIF should be discussed in detail in health monitoring systems of actual structures.
文摘Assuring medical images protection and robustness is a compulsory necessity nowadays.In this paper,a novel technique is proposed that fuses the wavelet-induced multi-resolution decomposition of the Discrete Wavelet Transform(DWT)with the energy compaction of the Discrete Wavelet Transform(DCT).The multi-level Encryption-based Hybrid Fusion Technique(EbhFT)aims to achieve great advances in terms of imperceptibility and security of medical images.A DWT disintegrated sub-band of a cover image is reformed simultaneously using the DCT transform.Afterwards,a 64-bit hex key is employed to encrypt the host image as well as participate in the second key creation process to encode the watermark.Lastly,a PN-sequence key is formed along with a supplementary key in the third layer of the EbHFT.Thus,the watermarked image is generated by enclosing both keys into DWT and DCT coefficients.The fusions ability of the proposed EbHFT technique makes the best use of the distinct privileges of using both DWT and DCT methods.In order to validate the proposed technique,a standard dataset of medical images is used.Simulation results show higher performance of the visual quality(i.e.,57.65)for the watermarked forms of all types of medical images.In addition,EbHFT robustness outperforms an existing scheme tested for the same dataset in terms of Normalized Correlation(NC).Finally,extra protection for digital images from against illegal replicating and unapproved tampering using the proposed technique.
基金Supported by the Science Foundation of Haikou Health Bureau (grant No.2010-SWY-13-058)Haikou Science Technology Information Bureau (grant No.2009-049-1)
文摘Objective:To describe the anatomical characteristics and patterns of neurovascular compression (NVC) in patients suffering trigeminal neuralgia(TN) by 3D high-resolution magnetic resonance imaging(MRI) method and image fusion technique.Methods:The anatomic structure of trigeminal nerve,brain stem and blood vessel was observed in 100 consecutive TN patients by 3D high resolution MRI(3D SPGR,contrast-enhanced T1 3D MP-RAGE and T2/T1 3D FIESTA). The 3D image sources were fused and visualized using 3D DOCTOR software.Results:One or several NVC sites,which usually appeared 0-9.8 mm away from brain stem,were found on the symptomatic side in 93%of the TN cases.Superior cerebellar artery was involved in 76%(71/93) of these cases.The other vessels including antero-inferior cerebellar artery,vertebral artery, basilar artery and veins also contributed to the occurrence of NVC.The NVC sites were found to be located in the proximal segment in 42%of these cases(39/93) and in the distal segment in 45% (42/93).Nerve dislocation or distortion was observed in 32%(30/93).Conclusions:Various 3D high resolution MRI methods combined with the image fusion technique could provide pathologic anatomic information for the diagnosis and treatment of TN.