In the context of today’s coexistence of multi-religious traditions,how different religious traditions get along is not only an academic issue,but also a practical one.Huayan Buddhism is one of the eight major school...In the context of today’s coexistence of multi-religious traditions,how different religious traditions get along is not only an academic issue,but also a practical one.Huayan Buddhism is one of the eight major schools of Buddhism in China.The characteristic theory of Chinese Huayan Buddhism-fusion thought,providing a way of thinking and practical guidance for friendly dialogue between religions,has not only solved the problem of religious dialogue,but also promoted the development of harmonious relations among different religions.In addition,it has positive implications for exchanges between civilizations and cultural diversity.展开更多
Network intrusion forensics is an important extension to present security infrastructure,and is becoming the focus of forensics research field.However,comparison with sophisticated multi-stage attacks and volume of se...Network intrusion forensics is an important extension to present security infrastructure,and is becoming the focus of forensics research field.However,comparison with sophisticated multi-stage attacks and volume of sensor data,current practices in network forensic analysis are to manually examine,an error prone,labor-intensive and time consuming process.To solve these problems,in this paper we propose a digital evidence fusion method for network forensics with Dempster-Shafer theory that can detect efficiently computer crime in networked environments,and fuse digital evidence from different sources such as hosts and sub-networks automatically.In the end,we evaluate the method on well-known KDD Cup1999 dataset.The results prove our method is very effective for real-time network forensics,and can provide comprehensible messages for a forensic investigators.展开更多
According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network e...According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network ensemble is proposed. In order to overcome the shortcomings of the single neural network, two improved neural network models are set up at the com-mon nodes to simplify the network structure. The initial fault diagnosis is based on the iron spectrum data and the pressure, flow and temperature(PFT) characteristic parameters as the input vectors of the two improved neural network models, and the diagnosis result is taken as the basic probability distribution of the evidence theory. Then the objectivity of assignment is real-ized. The initial diagnosis results of two improved neural networks are fused by D-S evidence theory. The experimental results show that this method can avoid the misdiagnosis of neural network recognition and improve the accuracy of the fault diagnosis of HDRLSS.展开更多
Four common oil analysis techniques, including the ferrography analysis (FA), the spectrometric oil analysis (SOA), the particle count analysis (PCA), and the oil quality testing (OQT), are used to implement t...Four common oil analysis techniques, including the ferrography analysis (FA), the spectrometric oil analysis (SOA), the particle count analysis (PCA), and the oil quality testing (OQT), are used to implement the military aeroengine wear fault diagnosis during the test drive process. To improve the precision and the reliability of the diagnosis, the aeroengine wear fault fusion diagnosis method based on the neural networks (NN) and the Dempster-Shafter (D-S) evidence theory is proposed. Firstly, according to the standard value of the wear limit, original data are pre-processed into Boolean values. Secondly, sub-NNs are established to perform the single diagnosis, and their training samples are dependent on experiences from experts. After each sub-NN is trained, diagnosis results are obtained. Thirdly, the diagnosis results of each sub-NN are considered as the basic probability allocation value to faults. The improved D-S evidence theory is applied to the fusion diagnosis, and the final fusion results are obtained. Finally, the method is verified by a diagnosis example.展开更多
The Internet of Things (IoT) implies a worldwide network of interconnected objects uniquely addressable, via standard communication protocols. The prevalence of IoT is bound to generate large amounts of multisource,...The Internet of Things (IoT) implies a worldwide network of interconnected objects uniquely addressable, via standard communication protocols. The prevalence of IoT is bound to generate large amounts of multisource, heterogeneous, dynamic, and sparse data. However, IoT offers inconsequential practical benefits without the ability to integrate, fuse, and glean useful information from such massive amounts of data. Accordingly, preparing us for the imminent invasion of things, a tool called data fusion can be used to manipulate and manage such data in order to improve process efficiency and provide advanced intelligence. In order to determine an acceptable quality of intelligence, diverse and voluminous data have to be combined and fused. Therefore, it is imperative to improve the computational efficiency for fusing and mining multidimensional data. In this paper, we propose an efficient multidimensional fusion algorithm for IoT data based on partitioning. The basic concept involves the partitioning of dimensions (attributes), i.e., a big data set with higher dimensions can be transformed into certain number of relatively smaller data subsets that can be easily processed. Then, based on the partitioning of dimensions, the discernible matrixes of all data subsets in rough set theory are computed to obtain their core attribute sets. Furthermore, a global core attribute set can be determined. Finally, the attribute reduction and rule extraction methods are used to obtain the fusion results. By means of proving a few theorems and simulation, the correctness and effectiveness of this algorithm is illustrated.展开更多
文摘In the context of today’s coexistence of multi-religious traditions,how different religious traditions get along is not only an academic issue,but also a practical one.Huayan Buddhism is one of the eight major schools of Buddhism in China.The characteristic theory of Chinese Huayan Buddhism-fusion thought,providing a way of thinking and practical guidance for friendly dialogue between religions,has not only solved the problem of religious dialogue,but also promoted the development of harmonious relations among different religions.In addition,it has positive implications for exchanges between civilizations and cultural diversity.
基金supported by the National Natural Science Foundation of China under Grant No.60903166 the National High Technology Research and Development Program of China(863 Program) under Grants No.2012AA012506,No.2012AA012901,No.2012AA012903+9 种基金 Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20121103120032 the Humanity and Social Science Youth Foundation of Ministry of Education of China under Grant No.13YJCZH065 the Opening Project of Key Lab of Information Network Security of Ministry of Public Security(The Third Research Institute of Ministry of Public Security) under Grant No.C13613 the China Postdoctoral Science Foundation General Program of Science and Technology Development Project of Beijing Municipal Education Commission of China under Grant No.km201410005012 the Research on Education and Teaching of Beijing University of Technology under Grant No.ER2013C24 the Beijing Municipal Natural Science Foundation Sponsored by Hunan Postdoctoral Scientific Program Open Research Fund of Beijing Key Laboratory of Trusted Computing Funds for the Central Universities, Contract No.2012JBM030
文摘Network intrusion forensics is an important extension to present security infrastructure,and is becoming the focus of forensics research field.However,comparison with sophisticated multi-stage attacks and volume of sensor data,current practices in network forensic analysis are to manually examine,an error prone,labor-intensive and time consuming process.To solve these problems,in this paper we propose a digital evidence fusion method for network forensics with Dempster-Shafer theory that can detect efficiently computer crime in networked environments,and fuse digital evidence from different sources such as hosts and sub-networks automatically.In the end,we evaluate the method on well-known KDD Cup1999 dataset.The results prove our method is very effective for real-time network forensics,and can provide comprehensible messages for a forensic investigators.
文摘According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network ensemble is proposed. In order to overcome the shortcomings of the single neural network, two improved neural network models are set up at the com-mon nodes to simplify the network structure. The initial fault diagnosis is based on the iron spectrum data and the pressure, flow and temperature(PFT) characteristic parameters as the input vectors of the two improved neural network models, and the diagnosis result is taken as the basic probability distribution of the evidence theory. Then the objectivity of assignment is real-ized. The initial diagnosis results of two improved neural networks are fused by D-S evidence theory. The experimental results show that this method can avoid the misdiagnosis of neural network recognition and improve the accuracy of the fault diagnosis of HDRLSS.
文摘Four common oil analysis techniques, including the ferrography analysis (FA), the spectrometric oil analysis (SOA), the particle count analysis (PCA), and the oil quality testing (OQT), are used to implement the military aeroengine wear fault diagnosis during the test drive process. To improve the precision and the reliability of the diagnosis, the aeroengine wear fault fusion diagnosis method based on the neural networks (NN) and the Dempster-Shafter (D-S) evidence theory is proposed. Firstly, according to the standard value of the wear limit, original data are pre-processed into Boolean values. Secondly, sub-NNs are established to perform the single diagnosis, and their training samples are dependent on experiences from experts. After each sub-NN is trained, diagnosis results are obtained. Thirdly, the diagnosis results of each sub-NN are considered as the basic probability allocation value to faults. The improved D-S evidence theory is applied to the fusion diagnosis, and the final fusion results are obtained. Finally, the method is verified by a diagnosis example.
基金the National High-Tech Research and Development (863) Program of China (No. 2011AA010101)the National Natural Science Foundation of China (Nos. 61103197, 61073009, and 61240029)+5 种基金the Science and Technology Key Project of Jilin Province (No. 2011ZDGG007)the Youth Foundation of Jilin Province of China (No. 201101035)the Fundamental Research Funds for the Central Universities of China (No. 200903179)China Postdoctoral Science Foundation (No. 2011M500611)the 2011 Industrial Technology Research and Development Special Project of Jilin Province (No. 2011006-9)the 2012 National College Students' Innovative Training Program of China, and European Union Framework Program: MONICA Project under the Grant Agreement Number PIRSES-GA-2011-295222
文摘The Internet of Things (IoT) implies a worldwide network of interconnected objects uniquely addressable, via standard communication protocols. The prevalence of IoT is bound to generate large amounts of multisource, heterogeneous, dynamic, and sparse data. However, IoT offers inconsequential practical benefits without the ability to integrate, fuse, and glean useful information from such massive amounts of data. Accordingly, preparing us for the imminent invasion of things, a tool called data fusion can be used to manipulate and manage such data in order to improve process efficiency and provide advanced intelligence. In order to determine an acceptable quality of intelligence, diverse and voluminous data have to be combined and fused. Therefore, it is imperative to improve the computational efficiency for fusing and mining multidimensional data. In this paper, we propose an efficient multidimensional fusion algorithm for IoT data based on partitioning. The basic concept involves the partitioning of dimensions (attributes), i.e., a big data set with higher dimensions can be transformed into certain number of relatively smaller data subsets that can be easily processed. Then, based on the partitioning of dimensions, the discernible matrixes of all data subsets in rough set theory are computed to obtain their core attribute sets. Furthermore, a global core attribute set can be determined. Finally, the attribute reduction and rule extraction methods are used to obtain the fusion results. By means of proving a few theorems and simulation, the correctness and effectiveness of this algorithm is illustrated.